Twitter中的多维社区检测

Nasser Zalmout, M. Ghanem
{"title":"Twitter中的多维社区检测","authors":"Nasser Zalmout, M. Ghanem","doi":"10.1109/ICIST.2013.6747510","DOIUrl":null,"url":null,"abstract":"We present and apply a generic methodology for multidimensional community detection from Twitter data. The approach builds on constructing multiple network structures based on the similarity and interaction patterns that exist between different users. It then applies traditional network centric community detection techniques to identify clusters of users. The paper also approaches the issues of dynamicity and evolution in Social Media by developing a Bayesian classifier that maps new users to the detected communities. Using a data set of UK political Tweets, we evaluate the factors affecting the quality of the detected communities. We also investigate how the accuracy of the classifier is affected by the dynamicity of the network evolution and the time elapsed between community detection and classifier application.","PeriodicalId":415759,"journal":{"name":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multidimensional community detection in Twitter\",\"authors\":\"Nasser Zalmout, M. Ghanem\",\"doi\":\"10.1109/ICIST.2013.6747510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present and apply a generic methodology for multidimensional community detection from Twitter data. The approach builds on constructing multiple network structures based on the similarity and interaction patterns that exist between different users. It then applies traditional network centric community detection techniques to identify clusters of users. The paper also approaches the issues of dynamicity and evolution in Social Media by developing a Bayesian classifier that maps new users to the detected communities. Using a data set of UK political Tweets, we evaluate the factors affecting the quality of the detected communities. We also investigate how the accuracy of the classifier is affected by the dynamicity of the network evolution and the time elapsed between community detection and classifier application.\",\"PeriodicalId\":415759,\"journal\":{\"name\":\"2013 IEEE Third International Conference on Information Science and Technology (ICIST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Third International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2013.6747510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2013.6747510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出并应用了一种从Twitter数据进行多维社区检测的通用方法。该方法基于不同用户之间存在的相似度和交互模式构建多个网络结构。然后应用传统的以网络为中心的社区检测技术来识别用户集群。本文还通过开发将新用户映射到检测社区的贝叶斯分类器来处理社交媒体中的动态和进化问题。使用英国政治推文的数据集,我们评估了影响检测社区质量的因素。我们还研究了分类器的准确性如何受到网络演化的动态性以及社区检测和分类器应用之间的时间的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multidimensional community detection in Twitter
We present and apply a generic methodology for multidimensional community detection from Twitter data. The approach builds on constructing multiple network structures based on the similarity and interaction patterns that exist between different users. It then applies traditional network centric community detection techniques to identify clusters of users. The paper also approaches the issues of dynamicity and evolution in Social Media by developing a Bayesian classifier that maps new users to the detected communities. Using a data set of UK political Tweets, we evaluate the factors affecting the quality of the detected communities. We also investigate how the accuracy of the classifier is affected by the dynamicity of the network evolution and the time elapsed between community detection and classifier application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信