量子优化算法需要多少纠缠?

Yanzhu Chen, Linghua Zhu, Chenxu Liu, N. Mayhall, Edwin Barnes, S. Economou
{"title":"量子优化算法需要多少纠缠?","authors":"Yanzhu Chen, Linghua Zhu, Chenxu Liu, N. Mayhall, Edwin Barnes, S. Economou","doi":"10.1364/quantum.2022.qm4a.2","DOIUrl":null,"url":null,"abstract":"ADAPT-QAOA, a novel problem-tailored version of quantum approximate optimization algorithm, speeds up convergence using entangling operators while reducing the total number of CNOTs. We explore how much entanglement is required to speed up optimization algorithms.","PeriodicalId":369002,"journal":{"name":"Quantum 2.0 Conference and Exhibition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"How Much Entanglement Do Quantum Optimization Algorithms Require?\",\"authors\":\"Yanzhu Chen, Linghua Zhu, Chenxu Liu, N. Mayhall, Edwin Barnes, S. Economou\",\"doi\":\"10.1364/quantum.2022.qm4a.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ADAPT-QAOA, a novel problem-tailored version of quantum approximate optimization algorithm, speeds up convergence using entangling operators while reducing the total number of CNOTs. We explore how much entanglement is required to speed up optimization algorithms.\",\"PeriodicalId\":369002,\"journal\":{\"name\":\"Quantum 2.0 Conference and Exhibition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum 2.0 Conference and Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/quantum.2022.qm4a.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum 2.0 Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/quantum.2022.qm4a.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

ADAPT-QAOA是一种新的问题定制版量子近似优化算法,它使用纠缠算子加速收敛,同时减少了CNOTs的总数。我们探讨了需要多少纠缠来加速优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Much Entanglement Do Quantum Optimization Algorithms Require?
ADAPT-QAOA, a novel problem-tailored version of quantum approximate optimization algorithm, speeds up convergence using entangling operators while reducing the total number of CNOTs. We explore how much entanglement is required to speed up optimization algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信