{"title":"全波段蒙特卡罗方法在硅纳米线中的声子输运","authors":"J. Larroque, J. Saint-Martin, P. Dollfus","doi":"10.1109/IWCE.2014.6865864","DOIUrl":null,"url":null,"abstract":"We show that with a Full-Band dispersion, the specific heat is closer to the experimental value than with an isotropic quadratic dispersion. So we use a Full-Band dispersion in the transport algorithm. A Monte Carlo algorithm has been developed to simulate phonon transport in silicon nanowire. It has been successfully used to simulate the thermal conductivity.","PeriodicalId":168149,"journal":{"name":"2014 International Workshop on Computational Electronics (IWCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Phonon transport in silicon nanowires using a Full-Band Monte Carlo approach\",\"authors\":\"J. Larroque, J. Saint-Martin, P. Dollfus\",\"doi\":\"10.1109/IWCE.2014.6865864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that with a Full-Band dispersion, the specific heat is closer to the experimental value than with an isotropic quadratic dispersion. So we use a Full-Band dispersion in the transport algorithm. A Monte Carlo algorithm has been developed to simulate phonon transport in silicon nanowire. It has been successfully used to simulate the thermal conductivity.\",\"PeriodicalId\":168149,\"journal\":{\"name\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2014.6865864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2014.6865864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phonon transport in silicon nanowires using a Full-Band Monte Carlo approach
We show that with a Full-Band dispersion, the specific heat is closer to the experimental value than with an isotropic quadratic dispersion. So we use a Full-Band dispersion in the transport algorithm. A Monte Carlo algorithm has been developed to simulate phonon transport in silicon nanowire. It has been successfully used to simulate the thermal conductivity.