用生物力学模拟模型估计上肢肌肉力量

Yanxin Zhang
{"title":"用生物力学模拟模型估计上肢肌肉力量","authors":"Yanxin Zhang","doi":"10.1504/IJBBR.2009.030055","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to quantify individual upper limb muscle forces during planar arm movements by a biomechanical simulation model. This study includes two steps. First, a multi-linkage rigid body biomechanical simulation model was developed. The simulation model was developed to create equations of motion for the body segments and simulate the directional dependent characteristic of joint muscle forces. Second, human subjects were recruited to perform planar arm reaching task in different directions. Kinematic data collected by a motion capture system was used as the input to the simulation model. The simulation results were further interpreted and compared with previous findings. Potential application of this model to biomedical robotics design was also discussed.","PeriodicalId":375470,"journal":{"name":"International Journal of Biomechatronics and Biomedical Robotics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of upper limb muscle forces by a biomechanical simulation model\",\"authors\":\"Yanxin Zhang\",\"doi\":\"10.1504/IJBBR.2009.030055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to quantify individual upper limb muscle forces during planar arm movements by a biomechanical simulation model. This study includes two steps. First, a multi-linkage rigid body biomechanical simulation model was developed. The simulation model was developed to create equations of motion for the body segments and simulate the directional dependent characteristic of joint muscle forces. Second, human subjects were recruited to perform planar arm reaching task in different directions. Kinematic data collected by a motion capture system was used as the input to the simulation model. The simulation results were further interpreted and compared with previous findings. Potential application of this model to biomedical robotics design was also discussed.\",\"PeriodicalId\":375470,\"journal\":{\"name\":\"International Journal of Biomechatronics and Biomedical Robotics\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomechatronics and Biomedical Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBBR.2009.030055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomechatronics and Biomedical Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBBR.2009.030055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过生物力学模拟模型来量化平面手臂运动过程中个体上肢肌肉的力量。本研究包括两个步骤。首先,建立了多连杆刚体生物力学仿真模型。建立了仿真模型,建立了身体各部分的运动方程,并模拟了关节肌肉力的方向依赖特性。第二,招募人类受试者完成不同方向的平面手臂伸展任务。运动捕捉系统采集的运动数据作为仿真模型的输入。对模拟结果进行了进一步的解释,并与前人的研究结果进行了比较。讨论了该模型在生物医学机器人设计中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of upper limb muscle forces by a biomechanical simulation model
The purpose of this study was to quantify individual upper limb muscle forces during planar arm movements by a biomechanical simulation model. This study includes two steps. First, a multi-linkage rigid body biomechanical simulation model was developed. The simulation model was developed to create equations of motion for the body segments and simulate the directional dependent characteristic of joint muscle forces. Second, human subjects were recruited to perform planar arm reaching task in different directions. Kinematic data collected by a motion capture system was used as the input to the simulation model. The simulation results were further interpreted and compared with previous findings. Potential application of this model to biomedical robotics design was also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信