具有跳变马尔可夫参数的离散系统的镇定控制

E. Yaz
{"title":"具有跳变马尔可夫参数的离散系统的镇定控制","authors":"E. Yaz","doi":"10.1109/CDC.1988.194662","DOIUrl":null,"url":null,"abstract":"A controller is presented for stabilizing linear, discrete-time systems with discrete-time, discrete state jump Markov parameters. Under the conditions given, the controller is shown to be stabilizing in the mean-square-exponential sense. These results can be extended in a straightforward manner to stabilize systems with additive white noises. The calculation of the control action involves the finite-time solution of a set of Riccati-like equations as opposed to the use of infinite-horizon solutions of the same equations in previous designs.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Stabilizing control of discrete systems with jump Markov parameters\",\"authors\":\"E. Yaz\",\"doi\":\"10.1109/CDC.1988.194662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A controller is presented for stabilizing linear, discrete-time systems with discrete-time, discrete state jump Markov parameters. Under the conditions given, the controller is shown to be stabilizing in the mean-square-exponential sense. These results can be extended in a straightforward manner to stabilize systems with additive white noises. The calculation of the control action involves the finite-time solution of a set of Riccati-like equations as opposed to the use of infinite-horizon solutions of the same equations in previous designs.<<ETX>>\",\"PeriodicalId\":113534,\"journal\":{\"name\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1988.194662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种稳定具有离散状态跳变马尔可夫参数的线性离散系统的控制器。在给定的条件下,证明了控制器在均方指数意义上是稳定的。这些结果可以直接推广到具有加性白噪声的系统的稳定。控制作用的计算涉及一组类里卡蒂方程的有限时间解,而不是在以前的设计中使用相同方程的无限视界解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizing control of discrete systems with jump Markov parameters
A controller is presented for stabilizing linear, discrete-time systems with discrete-time, discrete state jump Markov parameters. Under the conditions given, the controller is shown to be stabilizing in the mean-square-exponential sense. These results can be extended in a straightforward manner to stabilize systems with additive white noises. The calculation of the control action involves the finite-time solution of a set of Riccati-like equations as opposed to the use of infinite-horizon solutions of the same equations in previous designs.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信