太阳下三角形的阴影:空间几何中Lhuillier定理的基本代数证明

Victor El Adji, Humberto Bortolossi
{"title":"太阳下三角形的阴影:空间几何中Lhuillier定理的基本代数证明","authors":"Victor El Adji, Humberto Bortolossi","doi":"10.21711/2319023x2020/pmo1014","DOIUrl":null,"url":null,"abstract":"Cut out any triangle ABC from a sheet of paper. Assuming a sunny day when the sun’s rays are parallel and perpendicular to a flat surface, what kind of shadows will this triangle produce on this surface depending on how it is holded in the space? If the triangle ABC is not parallel to the sun’s rays, its shadow will be a triangle. In this case, what types of triangular shadows could be produced? It would be possible, for example, to hold the triangle ABC (supposed any) so that its shadow is an equilateral triangle ? The answer is affirmative, as the following theorem attests. we will present a ittle bit lenghty but elementary(that is, acessible to high school students) algebraic demonstration, of our knowledge, unpublished.","PeriodicalId":274953,"journal":{"name":"Revista Professor de Matemática On line","volume":"80 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sombras de triângulos ao sol: uma demonstração algébrica elementar do Teorema de Lhuillier em geometria espacial\",\"authors\":\"Victor El Adji, Humberto Bortolossi\",\"doi\":\"10.21711/2319023x2020/pmo1014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cut out any triangle ABC from a sheet of paper. Assuming a sunny day when the sun’s rays are parallel and perpendicular to a flat surface, what kind of shadows will this triangle produce on this surface depending on how it is holded in the space? If the triangle ABC is not parallel to the sun’s rays, its shadow will be a triangle. In this case, what types of triangular shadows could be produced? It would be possible, for example, to hold the triangle ABC (supposed any) so that its shadow is an equilateral triangle ? The answer is affirmative, as the following theorem attests. we will present a ittle bit lenghty but elementary(that is, acessible to high school students) algebraic demonstration, of our knowledge, unpublished.\",\"PeriodicalId\":274953,\"journal\":{\"name\":\"Revista Professor de Matemática On line\",\"volume\":\"80 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Professor de Matemática On line\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21711/2319023x2020/pmo1014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Professor de Matemática On line","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21711/2319023x2020/pmo1014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从一张纸上剪下任意三角形ABC。假设在一个阳光明媚的日子里,当太阳光平行和垂直于一个平面时,这个三角形会在这个平面上产生什么样的阴影,这取决于它在空间中的放置方式?如果三角形ABC不平行于太阳光,那么它的影子就是一个三角形。在这种情况下,可以产生哪些类型的三角形阴影?例如,是否有可能握住三角形ABC(假设有),使其阴影成为等边三角形?答案是肯定的,正如下面的定理所证明的那样。我们将展示一个略长但基本的(也就是说,高中生可以接触到的)代数演示,我们的知识,未发表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sombras de triângulos ao sol: uma demonstração algébrica elementar do Teorema de Lhuillier em geometria espacial
Cut out any triangle ABC from a sheet of paper. Assuming a sunny day when the sun’s rays are parallel and perpendicular to a flat surface, what kind of shadows will this triangle produce on this surface depending on how it is holded in the space? If the triangle ABC is not parallel to the sun’s rays, its shadow will be a triangle. In this case, what types of triangular shadows could be produced? It would be possible, for example, to hold the triangle ABC (supposed any) so that its shadow is an equilateral triangle ? The answer is affirmative, as the following theorem attests. we will present a ittle bit lenghty but elementary(that is, acessible to high school students) algebraic demonstration, of our knowledge, unpublished.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信