用一种新的核感知器方法学习排序

Xue-wen Chen, Haixun Wang, Xiaotong Lin
{"title":"用一种新的核感知器方法学习排序","authors":"Xue-wen Chen, Haixun Wang, Xiaotong Lin","doi":"10.1145/1645953.1646018","DOIUrl":null,"url":null,"abstract":"While conventional ranking algorithms, such as the PageRank, rely on the web structure to decide the relevancy of a web page, learning to rank seeks a function capable of ordering a set of instances using a supervised learning approach. Learning to rank has gained increasing popularity in information retrieval and machine learning communities. In this paper, we propose a novel nonlinear perceptron method for rank learning. The proposed method is an online algorithm and simple to implement. It introduces a kernel function to map the original feature space into a nonlinear space and employs a perceptron method to minimize the ranking error by avoiding converging to a solution near the decision boundary and alleviating the effect of outliers in the training dataset. Furthermore, unlike existing approaches such as RankSVM and RankBoost, the proposed method is scalable to large datasets for online learning. Experimental results on benchmark corpora show that our approach is more efficient and achieves higher or comparable accuracies in instance ranking than state of the art methods such as FRank, RankSVM and RankBoost.","PeriodicalId":286251,"journal":{"name":"Proceedings of the 18th ACM conference on Information and knowledge management","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Learning to rank with a novel kernel perceptron method\",\"authors\":\"Xue-wen Chen, Haixun Wang, Xiaotong Lin\",\"doi\":\"10.1145/1645953.1646018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While conventional ranking algorithms, such as the PageRank, rely on the web structure to decide the relevancy of a web page, learning to rank seeks a function capable of ordering a set of instances using a supervised learning approach. Learning to rank has gained increasing popularity in information retrieval and machine learning communities. In this paper, we propose a novel nonlinear perceptron method for rank learning. The proposed method is an online algorithm and simple to implement. It introduces a kernel function to map the original feature space into a nonlinear space and employs a perceptron method to minimize the ranking error by avoiding converging to a solution near the decision boundary and alleviating the effect of outliers in the training dataset. Furthermore, unlike existing approaches such as RankSVM and RankBoost, the proposed method is scalable to large datasets for online learning. Experimental results on benchmark corpora show that our approach is more efficient and achieves higher or comparable accuracies in instance ranking than state of the art methods such as FRank, RankSVM and RankBoost.\",\"PeriodicalId\":286251,\"journal\":{\"name\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1645953.1646018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1645953.1646018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

传统的排序算法,如PageRank,依赖于网页结构来决定网页的相关性,而学习排序则寻求一种能够使用监督学习方法对一组实例进行排序的功能。学习排序在信息检索和机器学习社区中越来越受欢迎。在本文中,我们提出了一种新的非线性感知器秩学习方法。该方法是一种在线算法,实现简单。它引入核函数将原始特征空间映射到非线性空间,并采用感知器方法避免收敛到决策边界附近的解,减轻训练数据集中离群值的影响,从而最小化排序误差。此外,与RankSVM和RankBoost等现有方法不同,该方法可扩展到大型数据集用于在线学习。在基准语料库上的实验结果表明,我们的方法比FRank、RankSVM和RankBoost等最先进的方法更有效,并且在实例排序方面达到了更高或相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to rank with a novel kernel perceptron method
While conventional ranking algorithms, such as the PageRank, rely on the web structure to decide the relevancy of a web page, learning to rank seeks a function capable of ordering a set of instances using a supervised learning approach. Learning to rank has gained increasing popularity in information retrieval and machine learning communities. In this paper, we propose a novel nonlinear perceptron method for rank learning. The proposed method is an online algorithm and simple to implement. It introduces a kernel function to map the original feature space into a nonlinear space and employs a perceptron method to minimize the ranking error by avoiding converging to a solution near the decision boundary and alleviating the effect of outliers in the training dataset. Furthermore, unlike existing approaches such as RankSVM and RankBoost, the proposed method is scalable to large datasets for online learning. Experimental results on benchmark corpora show that our approach is more efficient and achieves higher or comparable accuracies in instance ranking than state of the art methods such as FRank, RankSVM and RankBoost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信