{"title":"多元回归","authors":"T. Almonroeder","doi":"10.4324/9781003179757-10","DOIUrl":null,"url":null,"abstract":"test the significance of difference of two R2's to determine if adding an independent variable to the model helps significantly. Using hierarchical regression, one can see how most variance in the dependent can be explained by one or a set of new independent variables, over and above that explained by an earlier set. Of course, the estimates (b coefficients and constant) can be used to construct a prediction equation and generate predicted scores on a variable for further analysis.","PeriodicalId":177353,"journal":{"name":"Advanced Statistics for Physical and Occupational Therapy","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple regression\",\"authors\":\"T. Almonroeder\",\"doi\":\"10.4324/9781003179757-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"test the significance of difference of two R2's to determine if adding an independent variable to the model helps significantly. Using hierarchical regression, one can see how most variance in the dependent can be explained by one or a set of new independent variables, over and above that explained by an earlier set. Of course, the estimates (b coefficients and constant) can be used to construct a prediction equation and generate predicted scores on a variable for further analysis.\",\"PeriodicalId\":177353,\"journal\":{\"name\":\"Advanced Statistics for Physical and Occupational Therapy\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Statistics for Physical and Occupational Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4324/9781003179757-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Statistics for Physical and Occupational Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9781003179757-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
test the significance of difference of two R2's to determine if adding an independent variable to the model helps significantly. Using hierarchical regression, one can see how most variance in the dependent can be explained by one or a set of new independent variables, over and above that explained by an earlier set. Of course, the estimates (b coefficients and constant) can be used to construct a prediction equation and generate predicted scores on a variable for further analysis.