{"title":"卷积神经网络激光雷达定位的不确定性量化研究","authors":"M. Joerger, Julian Wang, A. Hassani","doi":"10.1109/iv51971.2022.9827445","DOIUrl":null,"url":null,"abstract":"In this paper, we develop and evaluate a Convolutional Neural Network (CNN)-based Light Detection and Ranging (LiDAR) localization algorithm that includes uncertainty quantification for ground vehicle navigation. This paper builds upon prior research where we used a CNN to estimate a rover’s position and orientation (pose) using LiDAR point clouds (PCs). This paper presents a simplification of the LiDAR PC processing and describes a new approach for outputting a covariance matrix in addition to the rover pose estimates. Performance assessment is carried out in a structured, static lab environment using a LiDAR-equipped rover moving along a fixed, repeated trajectory.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Uncertainty Quantification for Convolutional Neural Network LiDAR Localization\",\"authors\":\"M. Joerger, Julian Wang, A. Hassani\",\"doi\":\"10.1109/iv51971.2022.9827445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop and evaluate a Convolutional Neural Network (CNN)-based Light Detection and Ranging (LiDAR) localization algorithm that includes uncertainty quantification for ground vehicle navigation. This paper builds upon prior research where we used a CNN to estimate a rover’s position and orientation (pose) using LiDAR point clouds (PCs). This paper presents a simplification of the LiDAR PC processing and describes a new approach for outputting a covariance matrix in addition to the rover pose estimates. Performance assessment is carried out in a structured, static lab environment using a LiDAR-equipped rover moving along a fixed, repeated trajectory.\",\"PeriodicalId\":184622,\"journal\":{\"name\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iv51971.2022.9827445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Uncertainty Quantification for Convolutional Neural Network LiDAR Localization
In this paper, we develop and evaluate a Convolutional Neural Network (CNN)-based Light Detection and Ranging (LiDAR) localization algorithm that includes uncertainty quantification for ground vehicle navigation. This paper builds upon prior research where we used a CNN to estimate a rover’s position and orientation (pose) using LiDAR point clouds (PCs). This paper presents a simplification of the LiDAR PC processing and describes a new approach for outputting a covariance matrix in addition to the rover pose estimates. Performance assessment is carried out in a structured, static lab environment using a LiDAR-equipped rover moving along a fixed, repeated trajectory.