ICP注册申请的自适应双AK-D树搜索算法

Jiann-Der Lee, Shih-Sen Hsieh, Chung-Hsien Huang, Li-Chang Liu, Cheien-Tsai Wu, Shin-Tseng Lee, Jyi-Feng Chen
{"title":"ICP注册申请的自适应双AK-D树搜索算法","authors":"Jiann-Der Lee, Shih-Sen Hsieh, Chung-Hsien Huang, Li-Chang Liu, Cheien-Tsai Wu, Shin-Tseng Lee, Jyi-Feng Chen","doi":"10.1109/ICME.2006.262598","DOIUrl":null,"url":null,"abstract":"An algorithm for finding coupling points plays an important role in the iterative closest point algorithm (ICP) which is widely used in registration applications in medical and 3-D architecture areas. In recent researches of finding coupling points, Approximate K-D tree search algorithm (AK-D tree) is an efficient nearest neighbor search algorithm with comparable results. We proposed adaptive dual AK-D tree search algorithm (ADAK-D tree) for searching and synthesizing coupling points as significant control points to improve the registration accuracy in ICP registration applications. ADAK-D tree utilizes AK-D tree twice in different geometrical projection orders to reserve true nearest neighbor points used in later ICP stages. An adaptive threshold in ADAK-D tree is used to reserve sufficient coupling points for a smaller alignment error. Experimental results are shown that the registration accuracy of using ADAK-D tree is improved more than the result of using AK-D tree and the computation time is acceptable","PeriodicalId":339258,"journal":{"name":"2006 IEEE International Conference on Multimedia and Expo","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Dual AK-D Tree Search Algorithm for ICP Registration Applications\",\"authors\":\"Jiann-Der Lee, Shih-Sen Hsieh, Chung-Hsien Huang, Li-Chang Liu, Cheien-Tsai Wu, Shin-Tseng Lee, Jyi-Feng Chen\",\"doi\":\"10.1109/ICME.2006.262598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for finding coupling points plays an important role in the iterative closest point algorithm (ICP) which is widely used in registration applications in medical and 3-D architecture areas. In recent researches of finding coupling points, Approximate K-D tree search algorithm (AK-D tree) is an efficient nearest neighbor search algorithm with comparable results. We proposed adaptive dual AK-D tree search algorithm (ADAK-D tree) for searching and synthesizing coupling points as significant control points to improve the registration accuracy in ICP registration applications. ADAK-D tree utilizes AK-D tree twice in different geometrical projection orders to reserve true nearest neighbor points used in later ICP stages. An adaptive threshold in ADAK-D tree is used to reserve sufficient coupling points for a smaller alignment error. Experimental results are shown that the registration accuracy of using ADAK-D tree is improved more than the result of using AK-D tree and the computation time is acceptable\",\"PeriodicalId\":339258,\"journal\":{\"name\":\"2006 IEEE International Conference on Multimedia and Expo\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2006.262598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2006.262598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

迭代最近点算法(ICP)广泛应用于医疗和三维建筑领域的配准中,耦合点的寻找算法在其中起着重要的作用。在最近的寻找耦合点的研究中,近似K-D树搜索算法(Approximate K-D tree search algorithm, AK-D tree)是一种效率高、结果可比较的最近邻搜索算法。为了提高ICP配准应用中的配准精度,提出了自适应双AK-D树搜索算法(ADAK-D树),用于搜索和合成耦合点作为重要控制点。ADAK-D树以不同的几何投影顺序两次利用AK-D树来保留后期ICP阶段使用的真正最近邻点。在ADAK-D树中采用自适应阈值,为较小的对准误差保留足够的耦合点。实验结果表明,使用ADAK-D树的配准精度比使用AK-D树的配准精度有较大提高,且计算时间可以接受
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Dual AK-D Tree Search Algorithm for ICP Registration Applications
An algorithm for finding coupling points plays an important role in the iterative closest point algorithm (ICP) which is widely used in registration applications in medical and 3-D architecture areas. In recent researches of finding coupling points, Approximate K-D tree search algorithm (AK-D tree) is an efficient nearest neighbor search algorithm with comparable results. We proposed adaptive dual AK-D tree search algorithm (ADAK-D tree) for searching and synthesizing coupling points as significant control points to improve the registration accuracy in ICP registration applications. ADAK-D tree utilizes AK-D tree twice in different geometrical projection orders to reserve true nearest neighbor points used in later ICP stages. An adaptive threshold in ADAK-D tree is used to reserve sufficient coupling points for a smaller alignment error. Experimental results are shown that the registration accuracy of using ADAK-D tree is improved more than the result of using AK-D tree and the computation time is acceptable
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信