基于贝叶斯信息流的图像分割方法

A. Mishra, A. Wong, David A Clausi, P. Fieguth
{"title":"基于贝叶斯信息流的图像分割方法","authors":"A. Mishra, A. Wong, David A Clausi, P. Fieguth","doi":"10.1109/CRV.2010.46","DOIUrl":null,"url":null,"abstract":"A novel Bayesian information flow approach is presented for accurate image segmentation, formulated as a maximum a posteriori (MAP) problem as per the popular Mumford-Shah (MS) model. The model is solved using an iterative Bayesian estimation approach conditioned on the flow of information within the image, where the flow is based on inter-pixel interactions and intra-region smoothness constraints. In this way, a localized and accurate Bayesian estimate of the underlying piece-wise constant regions within an image can be found, even under high noise and low contrast situations. Experimental results using 2-D images show that the proposed Bayesian information flow approach is capable of producing more accurate segmentations when compared to state-of-the-art segmentation methods, especially under scenarios with high noise levels and poor contrast.","PeriodicalId":358821,"journal":{"name":"2010 Canadian Conference on Computer and Robot Vision","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Bayesian Information Flow Approach to Image Segmentation\",\"authors\":\"A. Mishra, A. Wong, David A Clausi, P. Fieguth\",\"doi\":\"10.1109/CRV.2010.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel Bayesian information flow approach is presented for accurate image segmentation, formulated as a maximum a posteriori (MAP) problem as per the popular Mumford-Shah (MS) model. The model is solved using an iterative Bayesian estimation approach conditioned on the flow of information within the image, where the flow is based on inter-pixel interactions and intra-region smoothness constraints. In this way, a localized and accurate Bayesian estimate of the underlying piece-wise constant regions within an image can be found, even under high noise and low contrast situations. Experimental results using 2-D images show that the proposed Bayesian information flow approach is capable of producing more accurate segmentations when compared to state-of-the-art segmentation methods, especially under scenarios with high noise levels and poor contrast.\",\"PeriodicalId\":358821,\"journal\":{\"name\":\"2010 Canadian Conference on Computer and Robot Vision\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Canadian Conference on Computer and Robot Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2010.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2010.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的贝叶斯信息流方法用于精确的图像分割,根据流行的Mumford-Shah (MS)模型,将其表述为最大后验(MAP)问题。该模型使用基于图像内信息流的迭代贝叶斯估计方法来求解,其中信息流基于像素间相互作用和区域内平滑约束。这样,即使在高噪声和低对比度的情况下,也可以找到图像中潜在的分段常量区域的局部和准确的贝叶斯估计。使用二维图像的实验结果表明,与最先进的分割方法相比,所提出的贝叶斯信息流方法能够产生更准确的分割,特别是在高噪声水平和差对比度的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Information Flow Approach to Image Segmentation
A novel Bayesian information flow approach is presented for accurate image segmentation, formulated as a maximum a posteriori (MAP) problem as per the popular Mumford-Shah (MS) model. The model is solved using an iterative Bayesian estimation approach conditioned on the flow of information within the image, where the flow is based on inter-pixel interactions and intra-region smoothness constraints. In this way, a localized and accurate Bayesian estimate of the underlying piece-wise constant regions within an image can be found, even under high noise and low contrast situations. Experimental results using 2-D images show that the proposed Bayesian information flow approach is capable of producing more accurate segmentations when compared to state-of-the-art segmentation methods, especially under scenarios with high noise levels and poor contrast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信