用分类标签学习VAE生成条件手写体字符

Keita Goto, Nakamasa Inoue
{"title":"用分类标签学习VAE生成条件手写体字符","authors":"Keita Goto, Nakamasa Inoue","doi":"10.23919/MVA51890.2021.9511404","DOIUrl":null,"url":null,"abstract":"The variational autoencoder (VAE) has succeeded in learning disentangled latent representations from data without supervision. Well disentangled representations can express interpretable semantic value, which is useful for various tasks, including image generation. However, the conventional VAE model is not suitable for data generation with specific category labels because it is challenging to acquire categorical information as latent variables. Therefore, we propose a framework for learning label representations in a VAE by using supervised categorical labels associated with data. Through experiments, we show that this framework is useful for generating data belonging to a specific category. Furthermore, we found that our framework successfully disentangled latent factors from similar data of different classes.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Learning VAE with Categorical Labels for Generating Conditional Handwritten Characters\",\"authors\":\"Keita Goto, Nakamasa Inoue\",\"doi\":\"10.23919/MVA51890.2021.9511404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The variational autoencoder (VAE) has succeeded in learning disentangled latent representations from data without supervision. Well disentangled representations can express interpretable semantic value, which is useful for various tasks, including image generation. However, the conventional VAE model is not suitable for data generation with specific category labels because it is challenging to acquire categorical information as latent variables. Therefore, we propose a framework for learning label representations in a VAE by using supervised categorical labels associated with data. Through experiments, we show that this framework is useful for generating data belonging to a specific category. Furthermore, we found that our framework successfully disentangled latent factors from similar data of different classes.\",\"PeriodicalId\":312481,\"journal\":{\"name\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA51890.2021.9511404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

变分自编码器(VAE)已经成功地在没有监督的情况下从数据中学习解纠缠的潜在表示。良好的解纠缠表示可以表达可解释的语义值,这对包括图像生成在内的各种任务都很有用。然而,传统的VAE模型并不适合具有特定类别标签的数据生成,因为它很难获取作为潜在变量的类别信息。因此,我们提出了一个框架,通过使用与数据相关的监督分类标签来学习VAE中的标签表示。通过实验,我们证明了该框架对于生成属于特定类别的数据是有用的。此外,我们发现我们的框架成功地从不同类别的相似数据中分离出潜在因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning VAE with Categorical Labels for Generating Conditional Handwritten Characters
The variational autoencoder (VAE) has succeeded in learning disentangled latent representations from data without supervision. Well disentangled representations can express interpretable semantic value, which is useful for various tasks, including image generation. However, the conventional VAE model is not suitable for data generation with specific category labels because it is challenging to acquire categorical information as latent variables. Therefore, we propose a framework for learning label representations in a VAE by using supervised categorical labels associated with data. Through experiments, we show that this framework is useful for generating data belonging to a specific category. Furthermore, we found that our framework successfully disentangled latent factors from similar data of different classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信