严格非圆源的多维张量- esprit算法分析性能评价

Jens Steinwandt, F. Roemer, M. Haardt
{"title":"严格非圆源的多维张量- esprit算法分析性能评价","authors":"Jens Steinwandt, F. Roemer, M. Haardt","doi":"10.1109/SAM.2016.7569659","DOIUrl":null,"url":null,"abstract":"Exploiting inherent signal structure is a common approach towards improving the performance of conventional parameter estimation algorithms. It has recently been shown that the multi-dimensional (RD) nature of the signals and their statistical properties, i.e., their second-order (SO) strictly non-circular (NC) structure, can be exploited simultaneously by R-D NC Tensor-ESPRIT-type algorithms. In this contribution, we develop an analytical first-order performance evaluation of R-D NC Standard Tensor-ESPRIT and R-D NC Unitary Tensor-ESPRIT. The derived expressions are asymptotic in the effective signal-to-noise ratio (SNR), i.e., they become exact for high SNRs or a large sample size. Moreover, apart from a zero mean and finite SO moments, no assumptions on the noise statistics are required. We show that as in the corresponding NC matrix case, the performance of R-D NC Standard Tensor-ESPRIT and R-D NC Unitary Tensor-ESPRIT is asymptotically identical. Simulations verify the derived expressions.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analytical performance evaluation of multi-dimensional Tensor-ESPRIT-based algorithms for strictly non-circular sources\",\"authors\":\"Jens Steinwandt, F. Roemer, M. Haardt\",\"doi\":\"10.1109/SAM.2016.7569659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploiting inherent signal structure is a common approach towards improving the performance of conventional parameter estimation algorithms. It has recently been shown that the multi-dimensional (RD) nature of the signals and their statistical properties, i.e., their second-order (SO) strictly non-circular (NC) structure, can be exploited simultaneously by R-D NC Tensor-ESPRIT-type algorithms. In this contribution, we develop an analytical first-order performance evaluation of R-D NC Standard Tensor-ESPRIT and R-D NC Unitary Tensor-ESPRIT. The derived expressions are asymptotic in the effective signal-to-noise ratio (SNR), i.e., they become exact for high SNRs or a large sample size. Moreover, apart from a zero mean and finite SO moments, no assumptions on the noise statistics are required. We show that as in the corresponding NC matrix case, the performance of R-D NC Standard Tensor-ESPRIT and R-D NC Unitary Tensor-ESPRIT is asymptotically identical. Simulations verify the derived expressions.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用固有信号结构是提高传统参数估计算法性能的一种常用方法。最近的研究表明,信号的多维(RD)性质及其统计性质,即它们的二阶(SO)严格非圆(NC)结构,可以通过R-D NC张量- esprit型算法同时利用。在此贡献中,我们开发了R-D NC标准张量- esprit和R-D NC酉张量- esprit的一阶分析性能评估。导出的表达式在有效信噪比(SNR)中是渐近的,即对于高信噪比或大样本量它们是精确的。此外,除了零均值和有限SO矩外,不需要对噪声统计量进行假设。我们证明了在相应的NC矩阵情况下,R-D NC标准张量- esprit和R-D NC酉张量- esprit的性能是渐近相同的。仿真验证了推导的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical performance evaluation of multi-dimensional Tensor-ESPRIT-based algorithms for strictly non-circular sources
Exploiting inherent signal structure is a common approach towards improving the performance of conventional parameter estimation algorithms. It has recently been shown that the multi-dimensional (RD) nature of the signals and their statistical properties, i.e., their second-order (SO) strictly non-circular (NC) structure, can be exploited simultaneously by R-D NC Tensor-ESPRIT-type algorithms. In this contribution, we develop an analytical first-order performance evaluation of R-D NC Standard Tensor-ESPRIT and R-D NC Unitary Tensor-ESPRIT. The derived expressions are asymptotic in the effective signal-to-noise ratio (SNR), i.e., they become exact for high SNRs or a large sample size. Moreover, apart from a zero mean and finite SO moments, no assumptions on the noise statistics are required. We show that as in the corresponding NC matrix case, the performance of R-D NC Standard Tensor-ESPRIT and R-D NC Unitary Tensor-ESPRIT is asymptotically identical. Simulations verify the derived expressions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信