反馈半隐式Taylor Galerkin有限元法模拟oldyd - b模型模膨胀流动

Nawalax Thongjub, V. Ngamaramvaranggul
{"title":"反馈半隐式Taylor Galerkin有限元法模拟oldyd - b模型模膨胀流动","authors":"Nawalax Thongjub, V. Ngamaramvaranggul","doi":"10.14416/J.IJAST.2014.12.002","DOIUrl":null,"url":null,"abstract":"This work is focused on creeping die-swell flow for Oldroyd-B fluid in two-dimensional axisymmetric system. The governing equations are solved via a combination of semi-implicit Taylor-Galerkin/pressure-correction finite element method and feedback condition. Some extra techniques for local velocity gradient recovery scheme and streamline-upwind/Petrov-Galerkin method are employed to improve the stability of solutions. For each time step after velocity field is computed, the specific region of die swell jet is adjusted while finite triangle elements in this area are re-meshed. Finally, the benchmark of swelling ratio with other literatures and analytical theory is presented in positive direction.","PeriodicalId":352801,"journal":{"name":"King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of Die-swell Flow for Oldroyd-B Model with Feedback Semi-implicit Taylor Galerkin Finite Element Method\",\"authors\":\"Nawalax Thongjub, V. Ngamaramvaranggul\",\"doi\":\"10.14416/J.IJAST.2014.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is focused on creeping die-swell flow for Oldroyd-B fluid in two-dimensional axisymmetric system. The governing equations are solved via a combination of semi-implicit Taylor-Galerkin/pressure-correction finite element method and feedback condition. Some extra techniques for local velocity gradient recovery scheme and streamline-upwind/Petrov-Galerkin method are employed to improve the stability of solutions. For each time step after velocity field is computed, the specific region of die swell jet is adjusted while finite triangle elements in this area are re-meshed. Finally, the benchmark of swelling ratio with other literatures and analytical theory is presented in positive direction.\",\"PeriodicalId\":352801,\"journal\":{\"name\":\"King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14416/J.IJAST.2014.12.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/J.IJAST.2014.12.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文主要研究二维轴对称体系中Oldroyd-B流体的蠕变模胀流动。采用半隐式Taylor-Galerkin/压力修正有限元法和反馈条件相结合的方法求解控制方程。为了提高解的稳定性,采用了局部速度梯度恢复方案和流线迎风/Petrov-Galerkin方法。在计算速度场后的每一个时间步长,对模具膨胀射流的特定区域进行调整,同时对该区域内的有限三角单元进行重新网格划分。最后,结合其他文献和分析理论,给出了膨胀比的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Die-swell Flow for Oldroyd-B Model with Feedback Semi-implicit Taylor Galerkin Finite Element Method
This work is focused on creeping die-swell flow for Oldroyd-B fluid in two-dimensional axisymmetric system. The governing equations are solved via a combination of semi-implicit Taylor-Galerkin/pressure-correction finite element method and feedback condition. Some extra techniques for local velocity gradient recovery scheme and streamline-upwind/Petrov-Galerkin method are employed to improve the stability of solutions. For each time step after velocity field is computed, the specific region of die swell jet is adjusted while finite triangle elements in this area are re-meshed. Finally, the benchmark of swelling ratio with other literatures and analytical theory is presented in positive direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信