基于方面的越南语情感分析语料库

Minh-Hao Nguyen, T. Nguyen, D. Thin, N. Nguyen
{"title":"基于方面的越南语情感分析语料库","authors":"Minh-Hao Nguyen, T. Nguyen, D. Thin, N. Nguyen","doi":"10.1109/KSE.2019.8919448","DOIUrl":null,"url":null,"abstract":"Recently, researchers have shown an increased interest in the aspect-based sentiment analysis problem. The goal is to extract valuable information concerning the aspects mentioned in users comments. This problem can be divided into three sub-tasks: term extraction, aspect detection, and polarity detection. In this paper, we present a new annotated corpus for studies on the two sub-tasks: aspect detection and polarity detection. Our corpus includes 7,828 restaurant reviews at document-level. We also performed a supervised learning method with rich features, achieving the F1-score of 87.13% for the aspect detection and the F1-score of 59.20% for polarity detection. Our corpus is published for research purpose1.","PeriodicalId":439841,"journal":{"name":"2019 11th International Conference on Knowledge and Systems Engineering (KSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A corpus for aspect-based sentiment analysis in Vietnamese\",\"authors\":\"Minh-Hao Nguyen, T. Nguyen, D. Thin, N. Nguyen\",\"doi\":\"10.1109/KSE.2019.8919448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, researchers have shown an increased interest in the aspect-based sentiment analysis problem. The goal is to extract valuable information concerning the aspects mentioned in users comments. This problem can be divided into three sub-tasks: term extraction, aspect detection, and polarity detection. In this paper, we present a new annotated corpus for studies on the two sub-tasks: aspect detection and polarity detection. Our corpus includes 7,828 restaurant reviews at document-level. We also performed a supervised learning method with rich features, achieving the F1-score of 87.13% for the aspect detection and the F1-score of 59.20% for polarity detection. Our corpus is published for research purpose1.\",\"PeriodicalId\":439841,\"journal\":{\"name\":\"2019 11th International Conference on Knowledge and Systems Engineering (KSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 11th International Conference on Knowledge and Systems Engineering (KSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE.2019.8919448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2019.8919448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

最近,研究人员对基于方面的情感分析问题表现出越来越大的兴趣。目标是提取有关用户评论中提到的方面的有价值的信息。这个问题可以分为三个子任务:术语提取、方面检测和极性检测。在本文中,我们提出了一个新的标注语料库,用于研究两个子任务:方面检测和极性检测。我们的语料库包括7,828个文档级别的餐厅评论。我们还采用了一种具有丰富特征的监督学习方法,其方面检测的f1得分为87.13%,极性检测的f1得分为59.20%。我们的语料库是为了研究目的而出版的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A corpus for aspect-based sentiment analysis in Vietnamese
Recently, researchers have shown an increased interest in the aspect-based sentiment analysis problem. The goal is to extract valuable information concerning the aspects mentioned in users comments. This problem can be divided into three sub-tasks: term extraction, aspect detection, and polarity detection. In this paper, we present a new annotated corpus for studies on the two sub-tasks: aspect detection and polarity detection. Our corpus includes 7,828 restaurant reviews at document-level. We also performed a supervised learning method with rich features, achieving the F1-score of 87.13% for the aspect detection and the F1-score of 59.20% for polarity detection. Our corpus is published for research purpose1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信