二阶非线性时滞动力学方程在时间尺度上的振动准则

Z. Han, Shurong Sun, Chenghui Zhang, Tongxing Li
{"title":"二阶非线性时滞动力学方程在时间尺度上的振动准则","authors":"Z. Han, Shurong Sun, Chenghui Zhang, Tongxing Li","doi":"10.1109/WCICA.2010.5554638","DOIUrl":null,"url":null,"abstract":"By means of Riccati transformation technique, we will establish some new oscillation criteria for the second-order nonlinear delay dynamic equation equations on a time scale T; here γ = 1 is an odd positive integers with p and q real-valued positive functions defined on T. Our results improve and extend some results established by Saker [S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comp. Appl. Math. 177 (2005) 375–387; S. H. Saker, Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput. 148 (2004) 81–91] and Sahiner [Y. Sahiner, Oscillation of second-order delay differential equations on time scales, Nonlinear Analysis, TMA, 63 (2005) 1073–1080] but also unify the oscillation of the second order nonlinear delay differential equation and the second order nonlinear delay difference equation.","PeriodicalId":315420,"journal":{"name":"2010 8th World Congress on Intelligent Control and Automation","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Oscillation criteria of second-order nonlinear delay dynamic equations on time scales\",\"authors\":\"Z. Han, Shurong Sun, Chenghui Zhang, Tongxing Li\",\"doi\":\"10.1109/WCICA.2010.5554638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By means of Riccati transformation technique, we will establish some new oscillation criteria for the second-order nonlinear delay dynamic equation equations on a time scale T; here γ = 1 is an odd positive integers with p and q real-valued positive functions defined on T. Our results improve and extend some results established by Saker [S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comp. Appl. Math. 177 (2005) 375–387; S. H. Saker, Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput. 148 (2004) 81–91] and Sahiner [Y. Sahiner, Oscillation of second-order delay differential equations on time scales, Nonlinear Analysis, TMA, 63 (2005) 1073–1080] but also unify the oscillation of the second order nonlinear delay differential equation and the second order nonlinear delay difference equation.\",\"PeriodicalId\":315420,\"journal\":{\"name\":\"2010 8th World Congress on Intelligent Control and Automation\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 8th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2010.5554638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 8th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2010.5554638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

利用Riccati变换技术,建立了时间尺度T上二阶非线性时滞动力学方程的振动判据;这里γ = 1是一个奇正整数,p和q是实值正函数,定义在t上。我们的结果改进和推广了Saker [S]建立的一些结果。王志强,二阶半线性动力学方程的振动准则,吉林大学学报(自然科学版)。数学。177 (2005)375-387;sh Saker,非线性动力学方程在时间尺度上的振动,应用。数学。[j] .计算机学报,2004(1):81-91。Sahiner,二阶时滞微分方程在时间尺度上的振荡,非线性分析,TMA, 63(2005) 1073-1080],同时也统一了二阶非线性时滞微分方程和二阶非线性时滞差分方程的振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillation criteria of second-order nonlinear delay dynamic equations on time scales
By means of Riccati transformation technique, we will establish some new oscillation criteria for the second-order nonlinear delay dynamic equation equations on a time scale T; here γ = 1 is an odd positive integers with p and q real-valued positive functions defined on T. Our results improve and extend some results established by Saker [S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comp. Appl. Math. 177 (2005) 375–387; S. H. Saker, Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput. 148 (2004) 81–91] and Sahiner [Y. Sahiner, Oscillation of second-order delay differential equations on time scales, Nonlinear Analysis, TMA, 63 (2005) 1073–1080] but also unify the oscillation of the second order nonlinear delay differential equation and the second order nonlinear delay difference equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信