Jeu de taquin,整流的唯一性和超离散KP

Shinsuke Iwao
{"title":"Jeu de taquin,整流的唯一性和超离散KP","authors":"Shinsuke Iwao","doi":"10.1093/integr/xyz012","DOIUrl":null,"url":null,"abstract":"\n In this article, we study tropical-theoretic aspects of the ‘rectification algorithm’ on skew Young tableaux. It is shown that the algorithm is interpreted as a time evolution of some tropical integrable system. By using this fact, we construct a new combinatorial map that is essentially equivalent to the rectification algorithm. Some of properties of the rectification can be seen more clearly via this map. For example, the uniqueness of a rectification boils down to an easy combinatorial problem. Our method is mainly based on the two previous researches: the theory of geometric tableaux by Noumi–Yamada, and the study on the relationship between jeu de taquin slides and the ultradiscrete KP equation by Mikami and Katayama–Kakei.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Jeu de taquin, uniqueness of rectification and ultradiscrete KP\",\"authors\":\"Shinsuke Iwao\",\"doi\":\"10.1093/integr/xyz012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this article, we study tropical-theoretic aspects of the ‘rectification algorithm’ on skew Young tableaux. It is shown that the algorithm is interpreted as a time evolution of some tropical integrable system. By using this fact, we construct a new combinatorial map that is essentially equivalent to the rectification algorithm. Some of properties of the rectification can be seen more clearly via this map. For example, the uniqueness of a rectification boils down to an easy combinatorial problem. Our method is mainly based on the two previous researches: the theory of geometric tableaux by Noumi–Yamada, and the study on the relationship between jeu de taquin slides and the ultradiscrete KP equation by Mikami and Katayama–Kakei.\",\"PeriodicalId\":242196,\"journal\":{\"name\":\"Journal of Integrable Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/integr/xyz012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/integr/xyz012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了偏斜杨表的“校正算法”的热带理论方面。结果表明,该算法可以解释为某热带可积系统的时间演化。利用这一事实,我们构造了一个新的组合映射,本质上相当于校正算法。通过这张图可以更清楚地看到整风的一些性质。例如,整流的唯一性可以归结为一个简单的组合问题。我们的方法主要基于两项前人的研究:一是山田直美(Noumi-Yamada)的几何表理论,二是山田直美(Mikami)和Katayama-Kakei对jeu de taquin滑动与超离散KP方程关系的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jeu de taquin, uniqueness of rectification and ultradiscrete KP
In this article, we study tropical-theoretic aspects of the ‘rectification algorithm’ on skew Young tableaux. It is shown that the algorithm is interpreted as a time evolution of some tropical integrable system. By using this fact, we construct a new combinatorial map that is essentially equivalent to the rectification algorithm. Some of properties of the rectification can be seen more clearly via this map. For example, the uniqueness of a rectification boils down to an easy combinatorial problem. Our method is mainly based on the two previous researches: the theory of geometric tableaux by Noumi–Yamada, and the study on the relationship between jeu de taquin slides and the ultradiscrete KP equation by Mikami and Katayama–Kakei.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信