基于图像处理技术的樱桃番茄生长阶段识别

Pocholo James M. Loresco, I. Valenzuela, Rex Paolo C. Gamara, Joan Baez Obien, E. Dadios
{"title":"基于图像处理技术的樱桃番茄生长阶段识别","authors":"Pocholo James M. Loresco, I. Valenzuela, Rex Paolo C. Gamara, Joan Baez Obien, E. Dadios","doi":"10.1109/HNICEM51456.2020.9400058","DOIUrl":null,"url":null,"abstract":"Controlled environment agriculture are being developed with the purpose of increasing production yield in farms. For optimal yield, it is very important to have an understanding about the relationship of environmental factors such as radiation, temperature, nutrients, water, and in relation with the growth state of the crop. Growth monitoring of cherry tomato crops in traditional methods are extremely labor-intensive, destructive, and costly in terms of time and money. Thus, application of computer vision has become an area of interest in the study of monitoring tomatoes' growth. In this study, image processing techniques are employed to identify the growth stage of cherry tomato as fruiting, flowering, and leafing stage. Confusion matrix with True Positive rate and False negative rate, and ROC are used to evaluate the decision support system developed. Experimental results show a high performance in determining the growth stage of test cherry tomato images.","PeriodicalId":230810,"journal":{"name":"2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth Stage Identification for Cherry Tomato using Image Processing Techniques\",\"authors\":\"Pocholo James M. Loresco, I. Valenzuela, Rex Paolo C. Gamara, Joan Baez Obien, E. Dadios\",\"doi\":\"10.1109/HNICEM51456.2020.9400058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlled environment agriculture are being developed with the purpose of increasing production yield in farms. For optimal yield, it is very important to have an understanding about the relationship of environmental factors such as radiation, temperature, nutrients, water, and in relation with the growth state of the crop. Growth monitoring of cherry tomato crops in traditional methods are extremely labor-intensive, destructive, and costly in terms of time and money. Thus, application of computer vision has become an area of interest in the study of monitoring tomatoes' growth. In this study, image processing techniques are employed to identify the growth stage of cherry tomato as fruiting, flowering, and leafing stage. Confusion matrix with True Positive rate and False negative rate, and ROC are used to evaluate the decision support system developed. Experimental results show a high performance in determining the growth stage of test cherry tomato images.\",\"PeriodicalId\":230810,\"journal\":{\"name\":\"2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM51456.2020.9400058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM51456.2020.9400058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以提高农场产量为目的的可控环境农业正在得到发展。为了获得最佳产量,了解辐射、温度、养分、水分等环境因素与作物生长状态的关系是非常重要的。传统的樱桃番茄生长监测方法劳动强度大,破坏性大,时间和金钱成本高。因此,计算机视觉的应用已成为番茄生长监测研究的热点。本研究采用图像处理技术对樱桃番茄的生长阶段进行了结果期、开花期和叶片期的识别。采用真阳性率和假阴性率的混淆矩阵和ROC对所开发的决策支持系统进行评价。实验结果表明,该方法能较好地确定樱桃番茄的生长阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth Stage Identification for Cherry Tomato using Image Processing Techniques
Controlled environment agriculture are being developed with the purpose of increasing production yield in farms. For optimal yield, it is very important to have an understanding about the relationship of environmental factors such as radiation, temperature, nutrients, water, and in relation with the growth state of the crop. Growth monitoring of cherry tomato crops in traditional methods are extremely labor-intensive, destructive, and costly in terms of time and money. Thus, application of computer vision has become an area of interest in the study of monitoring tomatoes' growth. In this study, image processing techniques are employed to identify the growth stage of cherry tomato as fruiting, flowering, and leafing stage. Confusion matrix with True Positive rate and False negative rate, and ROC are used to evaluate the decision support system developed. Experimental results show a high performance in determining the growth stage of test cherry tomato images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信