传感器网络的分布扩散非负LMS算法

Wei Huang, Xiaolong Deng, Yuzhu Ji, Shengyong Chen
{"title":"传感器网络的分布扩散非负LMS算法","authors":"Wei Huang, Xiaolong Deng, Yuzhu Ji, Shengyong Chen","doi":"10.1109/INDIN.2016.7819267","DOIUrl":null,"url":null,"abstract":"Since most distributed estimation algorithms only try to achieve high estimation precision while ignoring the positive-negative problem of components in the true parameter, estimation using these methods may be physically absurd and uninterpretable. In order to avoid erroneous results, we need to add a nonnegative constraint on the parameter to be estimated. In this paper, we propose a novel distributed diffusion nonnegative LMS algorithm with regularization for estimating some specific parameter. The algorithm keeps the non-negativity of all components in the parameter in the adaptation process. Simulations results illustrate the advantage of our algorithm in the low steady MSD level and high convergence rate.","PeriodicalId":421680,"journal":{"name":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed diffusion nonnegative LMS algorithm over sensor networks\",\"authors\":\"Wei Huang, Xiaolong Deng, Yuzhu Ji, Shengyong Chen\",\"doi\":\"10.1109/INDIN.2016.7819267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since most distributed estimation algorithms only try to achieve high estimation precision while ignoring the positive-negative problem of components in the true parameter, estimation using these methods may be physically absurd and uninterpretable. In order to avoid erroneous results, we need to add a nonnegative constraint on the parameter to be estimated. In this paper, we propose a novel distributed diffusion nonnegative LMS algorithm with regularization for estimating some specific parameter. The algorithm keeps the non-negativity of all components in the parameter in the adaptation process. Simulations results illustrate the advantage of our algorithm in the low steady MSD level and high convergence rate.\",\"PeriodicalId\":421680,\"journal\":{\"name\":\"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2016.7819267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2016.7819267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于大多数分布式估计算法只试图达到较高的估计精度,而忽略了真参数中分量的正负问题,使用这些方法进行估计可能在物理上是荒谬的和不可解释的。为了避免错误的结果,我们需要在待估计的参数上添加一个非负约束。本文提出了一种新的正则化分布扩散非负LMS算法,用于估计某些特定参数。该算法在自适应过程中保持参数中各分量的非负性。仿真结果表明了该算法在低稳态MSD水平和高收敛速度方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed diffusion nonnegative LMS algorithm over sensor networks
Since most distributed estimation algorithms only try to achieve high estimation precision while ignoring the positive-negative problem of components in the true parameter, estimation using these methods may be physically absurd and uninterpretable. In order to avoid erroneous results, we need to add a nonnegative constraint on the parameter to be estimated. In this paper, we propose a novel distributed diffusion nonnegative LMS algorithm with regularization for estimating some specific parameter. The algorithm keeps the non-negativity of all components in the parameter in the adaptation process. Simulations results illustrate the advantage of our algorithm in the low steady MSD level and high convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信