改进的联合概率数据关联算法

Wang Ming-Hui, Peng Ying-ning, You Zhi-sheng
{"title":"改进的联合概率数据关联算法","authors":"Wang Ming-Hui, Peng Ying-ning, You Zhi-sheng","doi":"10.1109/ICIF.2002.1021009","DOIUrl":null,"url":null,"abstract":"The joint probabilistic data association (JPDA) filter has a very good tracking performance in dense targets and heavy clutter environments. However, the JPDA filter also has a huge computer load and tends to combine neighboring tracks. In this paper, an improved JPDA algorithm is presented. The main feature of our method is improving the performance of the JPDA algorithm by improving the performance of the tracking gate. The effectiveness of this method is assessed by mathematical analysis.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improved joint probabilistic data association algorithm\",\"authors\":\"Wang Ming-Hui, Peng Ying-ning, You Zhi-sheng\",\"doi\":\"10.1109/ICIF.2002.1021009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The joint probabilistic data association (JPDA) filter has a very good tracking performance in dense targets and heavy clutter environments. However, the JPDA filter also has a huge computer load and tends to combine neighboring tracks. In this paper, an improved JPDA algorithm is presented. The main feature of our method is improving the performance of the JPDA algorithm by improving the performance of the tracking gate. The effectiveness of this method is assessed by mathematical analysis.\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1021009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

联合概率数据关联(JPDA)滤波器在密集目标和重杂波环境下具有很好的跟踪性能。然而,JPDA滤波器也有一个巨大的计算机负载,并倾向于结合邻近的轨道。本文提出了一种改进的JPDA算法。该方法的主要特点是通过改进跟踪门的性能来提高JPDA算法的性能。通过数学分析验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved joint probabilistic data association algorithm
The joint probabilistic data association (JPDA) filter has a very good tracking performance in dense targets and heavy clutter environments. However, the JPDA filter also has a huge computer load and tends to combine neighboring tracks. In this paper, an improved JPDA algorithm is presented. The main feature of our method is improving the performance of the JPDA algorithm by improving the performance of the tracking gate. The effectiveness of this method is assessed by mathematical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信