并行差分演化

D. Tasoulis, N. Pavlidis, V. Plagianakos, M. Vrahatis
{"title":"并行差分演化","authors":"D. Tasoulis, N. Pavlidis, V. Plagianakos, M. Vrahatis","doi":"10.1109/CEC.2004.1331145","DOIUrl":null,"url":null,"abstract":"Parallel processing has emerged as a key enabling technology in modern computing. Recent software advances have allowed collections of heterogeneous computers to be used as a concurrent computational resource. In this work we explore how differential evolution can be parallelized, using a ring-network topology, so as to improve both the speed and the performance of the method. Experimental results indicate that the extent of information exchange among subpopulations assigned to different processor nodes, bears a significant impact on the performance of the algorithm. Furthermore, not all the mutation strategies of the differential evolution algorithm are equally sensitive to the value of this parameter.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"246","resultStr":"{\"title\":\"Parallel differential evolution\",\"authors\":\"D. Tasoulis, N. Pavlidis, V. Plagianakos, M. Vrahatis\",\"doi\":\"10.1109/CEC.2004.1331145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel processing has emerged as a key enabling technology in modern computing. Recent software advances have allowed collections of heterogeneous computers to be used as a concurrent computational resource. In this work we explore how differential evolution can be parallelized, using a ring-network topology, so as to improve both the speed and the performance of the method. Experimental results indicate that the extent of information exchange among subpopulations assigned to different processor nodes, bears a significant impact on the performance of the algorithm. Furthermore, not all the mutation strategies of the differential evolution algorithm are equally sensitive to the value of this parameter.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"246\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1331145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 246

摘要

并行处理已成为现代计算领域的一项关键技术。最近的软件进步使得异构计算机的集合可以用作并发计算资源。在这项工作中,我们探索如何使用环网络拓扑并行化差分进化,从而提高该方法的速度和性能。实验结果表明,分配给不同处理器节点的子种群之间的信息交换程度对算法的性能有重要影响。此外,并非所有差分进化算法的突变策略对该参数的值都同样敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel differential evolution
Parallel processing has emerged as a key enabling technology in modern computing. Recent software advances have allowed collections of heterogeneous computers to be used as a concurrent computational resource. In this work we explore how differential evolution can be parallelized, using a ring-network topology, so as to improve both the speed and the performance of the method. Experimental results indicate that the extent of information exchange among subpopulations assigned to different processor nodes, bears a significant impact on the performance of the algorithm. Furthermore, not all the mutation strategies of the differential evolution algorithm are equally sensitive to the value of this parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信