基于用户视觉记忆的人脸检索框架

Yugo Sato, Tsukasa Fukusato, S. Morishima
{"title":"基于用户视觉记忆的人脸检索框架","authors":"Yugo Sato, Tsukasa Fukusato, S. Morishima","doi":"10.1145/3206025.3206038","DOIUrl":null,"url":null,"abstract":"This paper presents an interactive face retrieval framework for clarifying an image representation envisioned by a user. Our system is designed for a situation in which the user wishes to find a person but has only visual memory of the person. We address a critical challenge of image retrieval across the user's inputs. Instead of target-specific information, the user can select several images (or a single image) that are similar to an impression of the target person the user wishes to search for. Based on the user's selection, our proposed system automatically updates a deep convolutional neural network. By interactively repeating these process (human-in-the-loop optimization), the system can reduce the gap between human-based similarities and computer-based similarities and estimate the target image representation. We ran user studies with 10 subjects on a public database and confirmed that the proposed framework is effective for clarifying the image representation envisioned by the user easily and quickly.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Face Retrieval Framework Relying on User's Visual Memory\",\"authors\":\"Yugo Sato, Tsukasa Fukusato, S. Morishima\",\"doi\":\"10.1145/3206025.3206038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an interactive face retrieval framework for clarifying an image representation envisioned by a user. Our system is designed for a situation in which the user wishes to find a person but has only visual memory of the person. We address a critical challenge of image retrieval across the user's inputs. Instead of target-specific information, the user can select several images (or a single image) that are similar to an impression of the target person the user wishes to search for. Based on the user's selection, our proposed system automatically updates a deep convolutional neural network. By interactively repeating these process (human-in-the-loop optimization), the system can reduce the gap between human-based similarities and computer-based similarities and estimate the target image representation. We ran user studies with 10 subjects on a public database and confirmed that the proposed framework is effective for clarifying the image representation envisioned by the user easily and quickly.\",\"PeriodicalId\":224132,\"journal\":{\"name\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3206025.3206038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种交互式人脸检索框架,用于澄清用户设想的图像表示。我们的系统是为这样一种情况而设计的:用户希望找到一个人,但对这个人只有视觉记忆。我们解决了跨用户输入的图像检索的关键挑战。用户可以选择与用户希望搜索的目标人物的印象相似的几张图像(或一张图像),而不是特定于目标的信息。基于用户的选择,我们提出的系统自动更新深度卷积神经网络。通过交互重复这些过程(人在环优化),系统可以减少基于人的相似度和基于计算机的相似度之间的差距,并估计目标图像表示。我们在一个公共数据库上对10个主题进行了用户研究,并证实了所提出的框架对于简单快速地澄清用户所设想的图像表示是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Retrieval Framework Relying on User's Visual Memory
This paper presents an interactive face retrieval framework for clarifying an image representation envisioned by a user. Our system is designed for a situation in which the user wishes to find a person but has only visual memory of the person. We address a critical challenge of image retrieval across the user's inputs. Instead of target-specific information, the user can select several images (or a single image) that are similar to an impression of the target person the user wishes to search for. Based on the user's selection, our proposed system automatically updates a deep convolutional neural network. By interactively repeating these process (human-in-the-loop optimization), the system can reduce the gap between human-based similarities and computer-based similarities and estimate the target image representation. We ran user studies with 10 subjects on a public database and confirmed that the proposed framework is effective for clarifying the image representation envisioned by the user easily and quickly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信