基于匹配滤波的被动声纳探测与定位

Y. Chan, S. P. Morton, G. Niezgoda
{"title":"基于匹配滤波的被动声纳探测与定位","authors":"Y. Chan, S. P. Morton, G. Niezgoda","doi":"10.1109/SSAP.1994.572512","DOIUrl":null,"url":null,"abstract":"operation that estimates the number of targets. This paper presents a new method of detecting and tracking low signal-to-noise ratio (SNR) wide-band targets on a constant course and velocity trajectory. A track-before-detect strategy is adopted using spatial images constructed from conventional beamformer power bearing maps and a discrete bank of three dimensional matched velocity filters. A Neyman-Pearson detector forms a key feature of this technique, allowing the selection of trajectory solutions to be automated. Theoretical receiver operating characteristic curves show the increase in detection gain under low SNR conditions for matched velocity filtering in comparison to detect-before-track methods. Notationally, boldfaced lower-case and upper-citse symbols denote vectors and matrices, respectively. 11. Background We model the ocean as a non-dispersive, homogeneous propagation medium. The wavefield consists of Ns independent wide-band point sources of acoustic energy located in the far field of a horizontally oriented linear array of M equi-spaced sensors. At time t we denote Ns 4 2 ) = CSl(t) + n(t) (1) 3=1","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Passive Sonar Detection and Localization by Matched Filtering\",\"authors\":\"Y. Chan, S. P. Morton, G. Niezgoda\",\"doi\":\"10.1109/SSAP.1994.572512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"operation that estimates the number of targets. This paper presents a new method of detecting and tracking low signal-to-noise ratio (SNR) wide-band targets on a constant course and velocity trajectory. A track-before-detect strategy is adopted using spatial images constructed from conventional beamformer power bearing maps and a discrete bank of three dimensional matched velocity filters. A Neyman-Pearson detector forms a key feature of this technique, allowing the selection of trajectory solutions to be automated. Theoretical receiver operating characteristic curves show the increase in detection gain under low SNR conditions for matched velocity filtering in comparison to detect-before-track methods. Notationally, boldfaced lower-case and upper-citse symbols denote vectors and matrices, respectively. 11. Background We model the ocean as a non-dispersive, homogeneous propagation medium. The wavefield consists of Ns independent wide-band point sources of acoustic energy located in the far field of a horizontally oriented linear array of M equi-spaced sensors. At time t we denote Ns 4 2 ) = CSl(t) + n(t) (1) 3=1\",\"PeriodicalId\":151571,\"journal\":{\"name\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1994.572512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

估计目标器数量的操作。提出了一种恒航速低信噪比宽带目标检测与跟踪的新方法。利用传统波束形成器功率方位图和一组离散的三维匹配速度滤波器构成的空间图像,采用检测前跟踪策略。内曼-皮尔逊探测器形成了该技术的一个关键特征,允许轨迹解决方案的选择自动化。理论接收机工作特性曲线表明,在低信噪比条件下,与跟踪前检测方法相比,匹配速度滤波的检测增益有所增加。在符号上,黑体字的小写和大写符号分别表示向量和矩阵。11. 我们把海洋模拟成非色散的均匀传播介质。波场由位于M个等间距传感器水平定向线性阵列远场的Ns个独立的宽带声能点源组成。在时刻t,我们记ns2 = CSl(t) + n(t) (1) 3=1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passive Sonar Detection and Localization by Matched Filtering
operation that estimates the number of targets. This paper presents a new method of detecting and tracking low signal-to-noise ratio (SNR) wide-band targets on a constant course and velocity trajectory. A track-before-detect strategy is adopted using spatial images constructed from conventional beamformer power bearing maps and a discrete bank of three dimensional matched velocity filters. A Neyman-Pearson detector forms a key feature of this technique, allowing the selection of trajectory solutions to be automated. Theoretical receiver operating characteristic curves show the increase in detection gain under low SNR conditions for matched velocity filtering in comparison to detect-before-track methods. Notationally, boldfaced lower-case and upper-citse symbols denote vectors and matrices, respectively. 11. Background We model the ocean as a non-dispersive, homogeneous propagation medium. The wavefield consists of Ns independent wide-band point sources of acoustic energy located in the far field of a horizontally oriented linear array of M equi-spaced sensors. At time t we denote Ns 4 2 ) = CSl(t) + n(t) (1) 3=1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信