{"title":"k2U:从k点有效可调度性分析到基于利用率测试的通用框架","authors":"Jian-Jia Chen, Wen-Hung Huang, Cong Liu","doi":"10.1109/RTSS.2015.18","DOIUrl":null,"url":null,"abstract":"To deal with a large variety of workloads in different application domains in real-time embedded systems, a number of expressive task models have been developed. For each individual task model, researchers tend to develop different types of techniques for deriving schedulability tests with different computation complexity and performance. In this paper, we present a general schedulability analysis framework, namely the k2U framework, that can be potentially applied to analyze a large set of real-time task models under any fixed-priority scheduling algorithm, on both uniprocessor and multiprocessor scheduling. The key to k2U is a k-point effective schedulability test, which can be viewed as a \"blackbox\" interface. For any task model, if a corresponding k-point effective schedulability test can be constructed, then a sufficient utilization-based test can be automatically derived. We show the generality of k2U by applying it to different task models, which results in new and improved tests compared to the state-of-the-art.","PeriodicalId":239882,"journal":{"name":"2015 IEEE Real-Time Systems Symposium","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"k2U: A General Framework from k-Point Effective Schedulability Analysis to Utilization-Based Tests\",\"authors\":\"Jian-Jia Chen, Wen-Hung Huang, Cong Liu\",\"doi\":\"10.1109/RTSS.2015.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To deal with a large variety of workloads in different application domains in real-time embedded systems, a number of expressive task models have been developed. For each individual task model, researchers tend to develop different types of techniques for deriving schedulability tests with different computation complexity and performance. In this paper, we present a general schedulability analysis framework, namely the k2U framework, that can be potentially applied to analyze a large set of real-time task models under any fixed-priority scheduling algorithm, on both uniprocessor and multiprocessor scheduling. The key to k2U is a k-point effective schedulability test, which can be viewed as a \\\"blackbox\\\" interface. For any task model, if a corresponding k-point effective schedulability test can be constructed, then a sufficient utilization-based test can be automatically derived. We show the generality of k2U by applying it to different task models, which results in new and improved tests compared to the state-of-the-art.\",\"PeriodicalId\":239882,\"journal\":{\"name\":\"2015 IEEE Real-Time Systems Symposium\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Real-Time Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS.2015.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2015.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
k2U: A General Framework from k-Point Effective Schedulability Analysis to Utilization-Based Tests
To deal with a large variety of workloads in different application domains in real-time embedded systems, a number of expressive task models have been developed. For each individual task model, researchers tend to develop different types of techniques for deriving schedulability tests with different computation complexity and performance. In this paper, we present a general schedulability analysis framework, namely the k2U framework, that can be potentially applied to analyze a large set of real-time task models under any fixed-priority scheduling algorithm, on both uniprocessor and multiprocessor scheduling. The key to k2U is a k-point effective schedulability test, which can be viewed as a "blackbox" interface. For any task model, if a corresponding k-point effective schedulability test can be constructed, then a sufficient utilization-based test can be automatically derived. We show the generality of k2U by applying it to different task models, which results in new and improved tests compared to the state-of-the-art.