面部表情识别:基于SVM的残差学习

Fangjun Wang, Liping Shen
{"title":"面部表情识别:基于SVM的残差学习","authors":"Fangjun Wang, Liping Shen","doi":"10.1109/ICTAI.2019.00246","DOIUrl":null,"url":null,"abstract":"Residue learning using SVM is exploited to recognize facial expression in this paper. A facial expression consists of neutral component and expressive one(residue), which contains most of the expression information. Firstly, a cGAN is trained to generate neutral face image from an input face image. The intermediate layers record the information during this procedure. So secondly, kernel PCA and SVMs are exploited to analyze the residue in these intermediate layers. Results of experiments on five facial expression databases including BP4D, CK+, JAFFE, Oulu-CASIA and RAF show considerable performance compared with the latest methods.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facial Expression Recognition: Residue Learning Using SVM\",\"authors\":\"Fangjun Wang, Liping Shen\",\"doi\":\"10.1109/ICTAI.2019.00246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Residue learning using SVM is exploited to recognize facial expression in this paper. A facial expression consists of neutral component and expressive one(residue), which contains most of the expression information. Firstly, a cGAN is trained to generate neutral face image from an input face image. The intermediate layers record the information during this procedure. So secondly, kernel PCA and SVMs are exploited to analyze the residue in these intermediate layers. Results of experiments on five facial expression databases including BP4D, CK+, JAFFE, Oulu-CASIA and RAF show considerable performance compared with the latest methods.\",\"PeriodicalId\":346657,\"journal\":{\"name\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2019.00246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将残差学习应用于支持向量机的面部表情识别。面部表情由中性成分和剩余的表达成分组成,剩余成分包含了大部分的表情信息。首先,训练cGAN从输入的人脸图像生成中性人脸图像。中间层记录这个过程中的信息。其次,利用核主成分分析和支持向量机分析这些中间层的残差。在BP4D、CK+、JAFFE、Oulu-CASIA和RAF 5个面部表情数据库上的实验结果表明,与最新方法相比,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial Expression Recognition: Residue Learning Using SVM
Residue learning using SVM is exploited to recognize facial expression in this paper. A facial expression consists of neutral component and expressive one(residue), which contains most of the expression information. Firstly, a cGAN is trained to generate neutral face image from an input face image. The intermediate layers record the information during this procedure. So secondly, kernel PCA and SVMs are exploited to analyze the residue in these intermediate layers. Results of experiments on five facial expression databases including BP4D, CK+, JAFFE, Oulu-CASIA and RAF show considerable performance compared with the latest methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信