{"title":"刚体运动群亚黎曼问题的极值控制","authors":"Alexey Pavlovich Mashtakov","doi":"10.1109/STAB49150.2020.9140718","DOIUrl":null,"url":null,"abstract":"We consider the sub-Riemannian problem on the group of rigid body motions in three–dimensional space. Such a problem is encountered in the analysis of 3D images as well as in describing the motion of a solid body in a fluid. Mathematically, this problem reduces to solving a Hamiltonian system, the vertical part of which is a system of six differential equations with unknown functions — extremal controls. We derive an ordinary differential equation for one of the components of the extremal control vector. The obtained equation admits a solution in elliptic functions. Then we find the expression in the operator form for the remaining components of the extremal control vector.","PeriodicalId":166223,"journal":{"name":"2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Extremal Controls in the Sub-Riemannian Problem on the Group of Rigid Body Motions\",\"authors\":\"Alexey Pavlovich Mashtakov\",\"doi\":\"10.1109/STAB49150.2020.9140718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the sub-Riemannian problem on the group of rigid body motions in three–dimensional space. Such a problem is encountered in the analysis of 3D images as well as in describing the motion of a solid body in a fluid. Mathematically, this problem reduces to solving a Hamiltonian system, the vertical part of which is a system of six differential equations with unknown functions — extremal controls. We derive an ordinary differential equation for one of the components of the extremal control vector. The obtained equation admits a solution in elliptic functions. Then we find the expression in the operator form for the remaining components of the extremal control vector.\",\"PeriodicalId\":166223,\"journal\":{\"name\":\"2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STAB49150.2020.9140718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STAB49150.2020.9140718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Extremal Controls in the Sub-Riemannian Problem on the Group of Rigid Body Motions
We consider the sub-Riemannian problem on the group of rigid body motions in three–dimensional space. Such a problem is encountered in the analysis of 3D images as well as in describing the motion of a solid body in a fluid. Mathematically, this problem reduces to solving a Hamiltonian system, the vertical part of which is a system of six differential equations with unknown functions — extremal controls. We derive an ordinary differential equation for one of the components of the extremal control vector. The obtained equation admits a solution in elliptic functions. Then we find the expression in the operator form for the remaining components of the extremal control vector.