基于冗余缩减和相关性的神经编码

A. Kardec Barros, A. Chichocki
{"title":"基于冗余缩减和相关性的神经编码","authors":"A. Kardec Barros, A. Chichocki","doi":"10.1109/SBRN.2002.1181478","DOIUrl":null,"url":null,"abstract":"Redundancy reduction as a form of neural coding has been a topic of large research interest. A number of strategies has been proposed, but the one which is attracting the most attention assumes that this coding is carried out so that the output signals are mutually independent. In this work we go one step further and suggest an algorithm that separates also non-orthogonal signals (i.e. dependent signals). The resulting algorithm is very simple, as it is computationally economical and based on second order statistics that, as it is well know, is more robust to errors than higher order statistics. Moreover, the permutation/scaling problem is also avoided. The framework is given with a biological background, and we point out that the algorithm can also be used in other applications such as biomedical engineering and telecommunications.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neural coding by redundancy reduction and correlation\",\"authors\":\"A. Kardec Barros, A. Chichocki\",\"doi\":\"10.1109/SBRN.2002.1181478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Redundancy reduction as a form of neural coding has been a topic of large research interest. A number of strategies has been proposed, but the one which is attracting the most attention assumes that this coding is carried out so that the output signals are mutually independent. In this work we go one step further and suggest an algorithm that separates also non-orthogonal signals (i.e. dependent signals). The resulting algorithm is very simple, as it is computationally economical and based on second order statistics that, as it is well know, is more robust to errors than higher order statistics. Moreover, the permutation/scaling problem is also avoided. The framework is given with a biological background, and we point out that the algorithm can also be used in other applications such as biomedical engineering and telecommunications.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

冗余约简作为神经编码的一种形式,一直是一个备受关注的研究课题。已经提出了许多策略,但其中最引人注目的是假设进行这种编码使输出信号相互独立。在这项工作中,我们进一步提出了一种分离非正交信号(即相关信号)的算法。所得到的算法非常简单,因为它在计算上很经济,并且基于二阶统计量,众所周知,二阶统计量比高阶统计量对错误的鲁棒性更强。此外,还避免了排列/缩放问题。该框架是在生物学背景下给出的,我们指出该算法也可以用于其他应用,如生物医学工程和电信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural coding by redundancy reduction and correlation
Redundancy reduction as a form of neural coding has been a topic of large research interest. A number of strategies has been proposed, but the one which is attracting the most attention assumes that this coding is carried out so that the output signals are mutually independent. In this work we go one step further and suggest an algorithm that separates also non-orthogonal signals (i.e. dependent signals). The resulting algorithm is very simple, as it is computationally economical and based on second order statistics that, as it is well know, is more robust to errors than higher order statistics. Moreover, the permutation/scaling problem is also avoided. The framework is given with a biological background, and we point out that the algorithm can also be used in other applications such as biomedical engineering and telecommunications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信