使用生成对抗网络的医学图像超分辨率

Yongpei Zhu, Zicong Zhou, G. Liao, Kehong Yuan
{"title":"使用生成对抗网络的医学图像超分辨率","authors":"Yongpei Zhu, Zicong Zhou, G. Liao, Kehong Yuan","doi":"10.1109/ISBIWorkshops50223.2020.9153436","DOIUrl":null,"url":null,"abstract":"Super-resolution medical image is vital for doctor’s diagnosis and quantitative analysis. In this work we propose a novel super-resolution generative adversarial network which combine conditional GAN (CGAN) and SRGAN, refer to it as CSRGAN to generate super-resolution (SR) images. We use differential geometric information including Jacobian determinant (JD) and curl vector (CV) as conditional inputs of both the discriminator and generator of SRGAN, which make full use of the idea of using GANs to learn a mapping from one manifold to another. In addition, we proposed a content loss motivated by CV feature information instead of VGG loss in SRGAN. We trained our model on a large-scale dataset CelebFaces Attributes, tested it on medical ultrasound image dataset. The experimental results show the method can achieve better performance in SR image generation with higher average peak signal-tonoise ratio (PSNR), Structural Similarity (SSIM) and Mean Opinion Score (MOS) compared with SRGAN.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Csrgan: Medical Image Super-Resolution Using A Generative Adversarial Network\",\"authors\":\"Yongpei Zhu, Zicong Zhou, G. Liao, Kehong Yuan\",\"doi\":\"10.1109/ISBIWorkshops50223.2020.9153436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Super-resolution medical image is vital for doctor’s diagnosis and quantitative analysis. In this work we propose a novel super-resolution generative adversarial network which combine conditional GAN (CGAN) and SRGAN, refer to it as CSRGAN to generate super-resolution (SR) images. We use differential geometric information including Jacobian determinant (JD) and curl vector (CV) as conditional inputs of both the discriminator and generator of SRGAN, which make full use of the idea of using GANs to learn a mapping from one manifold to another. In addition, we proposed a content loss motivated by CV feature information instead of VGG loss in SRGAN. We trained our model on a large-scale dataset CelebFaces Attributes, tested it on medical ultrasound image dataset. The experimental results show the method can achieve better performance in SR image generation with higher average peak signal-tonoise ratio (PSNR), Structural Similarity (SSIM) and Mean Opinion Score (MOS) compared with SRGAN.\",\"PeriodicalId\":329356,\"journal\":{\"name\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

超分辨率医学图像对医生的诊断和定量分析至关重要。在这项工作中,我们提出了一种新的超分辨率生成对抗网络,它结合了条件GAN (CGAN)和SRGAN,将其称为CSRGAN来生成超分辨率(SR)图像。我们使用包含雅可比行列式(JD)和旋度向量(CV)的微分几何信息作为SRGAN鉴别器和生成器的条件输入,充分利用了用gan学习从一个流形到另一个流形的映射的思想。此外,我们提出了一种由CV特征信息驱动的内容损失,而不是SRGAN中的VGG损失。我们在一个大型数据集CelebFaces Attributes上训练了我们的模型,并在医学超声图像数据集上进行了测试。实验结果表明,与SRGAN相比,该方法具有更高的平均峰值信噪比(PSNR)、结构相似度(SSIM)和平均意见评分(MOS),可以获得更好的SR图像生成性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Csrgan: Medical Image Super-Resolution Using A Generative Adversarial Network
Super-resolution medical image is vital for doctor’s diagnosis and quantitative analysis. In this work we propose a novel super-resolution generative adversarial network which combine conditional GAN (CGAN) and SRGAN, refer to it as CSRGAN to generate super-resolution (SR) images. We use differential geometric information including Jacobian determinant (JD) and curl vector (CV) as conditional inputs of both the discriminator and generator of SRGAN, which make full use of the idea of using GANs to learn a mapping from one manifold to another. In addition, we proposed a content loss motivated by CV feature information instead of VGG loss in SRGAN. We trained our model on a large-scale dataset CelebFaces Attributes, tested it on medical ultrasound image dataset. The experimental results show the method can achieve better performance in SR image generation with higher average peak signal-tonoise ratio (PSNR), Structural Similarity (SSIM) and Mean Opinion Score (MOS) compared with SRGAN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信