用粒子滤波估计状态变量:与卡尔曼滤波的实验比较

Marcos del Toro Peral, Fernando Gomez Bravo, Alberto MartinhoVale
{"title":"用粒子滤波估计状态变量:与卡尔曼滤波的实验比较","authors":"Marcos del Toro Peral, Fernando Gomez Bravo, Alberto MartinhoVale","doi":"10.1109/WISP.2007.4447543","DOIUrl":null,"url":null,"abstract":"Within the probabilistic methods for the state estimation of a dynamic system, the particle filter approach is an innovative technique which is focusing the attention of current researches. Particle filtering succeeds in applying to different type of systems (linear and non-linear) and noise models. This paper presents a comparison between the results obtained using the particle Filter and the Kalman Filter for estimating the orientation and velocity of a DC motor. Real experiments are also presented.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"State Variables Estimation Using Particle Filter: Experimental Comparison with Kalman Filter\",\"authors\":\"Marcos del Toro Peral, Fernando Gomez Bravo, Alberto MartinhoVale\",\"doi\":\"10.1109/WISP.2007.4447543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the probabilistic methods for the state estimation of a dynamic system, the particle filter approach is an innovative technique which is focusing the attention of current researches. Particle filtering succeeds in applying to different type of systems (linear and non-linear) and noise models. This paper presents a comparison between the results obtained using the particle Filter and the Kalman Filter for estimating the orientation and velocity of a DC motor. Real experiments are also presented.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在动态系统状态估计的概率方法中,粒子滤波方法是目前研究的热点。粒子滤波成功地应用于不同类型的系统(线性和非线性)和噪声模型。本文比较了用粒子滤波和卡尔曼滤波估计直流电动机的方向和速度的结果。并给出了实际实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State Variables Estimation Using Particle Filter: Experimental Comparison with Kalman Filter
Within the probabilistic methods for the state estimation of a dynamic system, the particle filter approach is an innovative technique which is focusing the attention of current researches. Particle filtering succeeds in applying to different type of systems (linear and non-linear) and noise models. This paper presents a comparison between the results obtained using the particle Filter and the Kalman Filter for estimating the orientation and velocity of a DC motor. Real experiments are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信