压电陶瓷振动器微颗粒分离装置的研制

K. Ooe, T. Fukuda
{"title":"压电陶瓷振动器微颗粒分离装置的研制","authors":"K. Ooe, T. Fukuda","doi":"10.1109/MHS.2009.5352095","DOIUrl":null,"url":null,"abstract":"During hemanalysis, it is necessary to separate blood cells from whole blood. Many blood separation methods, for example, centrifugation and filtering, are in practical use. However, the use of these methods involves problems from the perspectives of processing speed and processing volume. We develop new types of blood separation devices that use piezo-ceramic vibrators. The first device uses a capillary. One end of the capillary is fixed to the device frame, and the other is fixed to a piezo-ceramic vibrator. The vibrator transmits bending waves to the capillary. This device can process only a small amount of solution; therefore, it is not suitable for hemanalysis. In order to solve this problem, we developed a second device; this device has a pair of thin glass plates with a small gap as a substitute for the capillary used in the first device. These devices are based on the fact that particles heavier than water move toward transverse velocity antinodes while those lighter than water move toward velocity nodes. In this report, we demonstrate the high-speed separation of silica microbeads and 50-vol% glycerol water by using these devices. The first device can separate the abovementioned solution within 3 min while the second can separate it within 1 min. Both devices are driven by a rectangular wave of 15 to 20 Vpp. Furthermore, it has been confirmed that red blood cells are separated from diluted whole blood using the first device within approximately 1 min. These devices have transparency, so they can compose as the analysis system with the chemical analyzer easily.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Development of micro particles separation device with piezo-ceramic vibrator\",\"authors\":\"K. Ooe, T. Fukuda\",\"doi\":\"10.1109/MHS.2009.5352095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During hemanalysis, it is necessary to separate blood cells from whole blood. Many blood separation methods, for example, centrifugation and filtering, are in practical use. However, the use of these methods involves problems from the perspectives of processing speed and processing volume. We develop new types of blood separation devices that use piezo-ceramic vibrators. The first device uses a capillary. One end of the capillary is fixed to the device frame, and the other is fixed to a piezo-ceramic vibrator. The vibrator transmits bending waves to the capillary. This device can process only a small amount of solution; therefore, it is not suitable for hemanalysis. In order to solve this problem, we developed a second device; this device has a pair of thin glass plates with a small gap as a substitute for the capillary used in the first device. These devices are based on the fact that particles heavier than water move toward transverse velocity antinodes while those lighter than water move toward velocity nodes. In this report, we demonstrate the high-speed separation of silica microbeads and 50-vol% glycerol water by using these devices. The first device can separate the abovementioned solution within 3 min while the second can separate it within 1 min. Both devices are driven by a rectangular wave of 15 to 20 Vpp. Furthermore, it has been confirmed that red blood cells are separated from diluted whole blood using the first device within approximately 1 min. These devices have transparency, so they can compose as the analysis system with the chemical analyzer easily.\",\"PeriodicalId\":344667,\"journal\":{\"name\":\"2009 International Symposium on Micro-NanoMechatronics and Human Science\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Symposium on Micro-NanoMechatronics and Human Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MHS.2009.5352095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Micro-NanoMechatronics and Human Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2009.5352095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在血液分析中,有必要将血细胞从全血中分离出来。许多血液分离方法,如离心和过滤,都在实际应用中。然而,这些方法的使用涉及到处理速度和处理量方面的问题。我们开发了使用压电陶瓷振动器的新型血液分离装置。第一种装置使用毛细管。毛细管一端固定在装置框架上,另一端固定在压电陶瓷振动器上。振动器向毛细管传递弯曲波。本装置只能处理少量溶液;因此,它不适合血液分析。为了解决这个问题,我们开发了第二个装置;该装置有一对有小间隙的薄玻璃板,作为第一个装置中使用的毛细管的替代品。这些装置是基于这样一个事实:比水重的粒子向横向速度节点移动,而比水轻的粒子向速度节点移动。在本报告中,我们演示了使用这些装置对二氧化硅微珠和50 vol%甘油水的高速分离。第一种装置可在3分钟内分离上述溶液,第二种装置可在1分钟内分离上述溶液。两种装置均由15至20 Vpp的矩形波驱动。此外,已经证实,使用第一种设备可以在大约1分钟内将红细胞从稀释的全血中分离出来。这些设备具有透明度,因此可以轻松地与化学分析仪组成分析系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of micro particles separation device with piezo-ceramic vibrator
During hemanalysis, it is necessary to separate blood cells from whole blood. Many blood separation methods, for example, centrifugation and filtering, are in practical use. However, the use of these methods involves problems from the perspectives of processing speed and processing volume. We develop new types of blood separation devices that use piezo-ceramic vibrators. The first device uses a capillary. One end of the capillary is fixed to the device frame, and the other is fixed to a piezo-ceramic vibrator. The vibrator transmits bending waves to the capillary. This device can process only a small amount of solution; therefore, it is not suitable for hemanalysis. In order to solve this problem, we developed a second device; this device has a pair of thin glass plates with a small gap as a substitute for the capillary used in the first device. These devices are based on the fact that particles heavier than water move toward transverse velocity antinodes while those lighter than water move toward velocity nodes. In this report, we demonstrate the high-speed separation of silica microbeads and 50-vol% glycerol water by using these devices. The first device can separate the abovementioned solution within 3 min while the second can separate it within 1 min. Both devices are driven by a rectangular wave of 15 to 20 Vpp. Furthermore, it has been confirmed that red blood cells are separated from diluted whole blood using the first device within approximately 1 min. These devices have transparency, so they can compose as the analysis system with the chemical analyzer easily.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信