一种快速反向传播学习的模糊神经网络技术

H. Y. Xu, G.Z. Wang, C.B. Baird
{"title":"一种快速反向传播学习的模糊神经网络技术","authors":"H. Y. Xu, G.Z. Wang, C.B. Baird","doi":"10.1109/IJCNN.1992.287133","DOIUrl":null,"url":null,"abstract":"A fuzzy neural network (FNN) technique is presented based on fuzzy systems and neural network technologies. Utilizing human knowledge and expertise, the FNN technique is applied to accelerate the learning process of a novel backpropagation algorithm in which both self-adjusting activation and learning rate functions are designated. The learning speed and quality of the fuzzy neural networks are proved to be superior to those of standard backpropagation and other methods using changeable learning rates or activation functions. The proposed networks are currently developed and implemented in a C language environment. Experimental and analytical results demonstrate that the FNN technique is a novel and potentially powerful approach to intelligent neural networks.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A fuzzy neural networks technique with fast backpropagation learning\",\"authors\":\"H. Y. Xu, G.Z. Wang, C.B. Baird\",\"doi\":\"10.1109/IJCNN.1992.287133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fuzzy neural network (FNN) technique is presented based on fuzzy systems and neural network technologies. Utilizing human knowledge and expertise, the FNN technique is applied to accelerate the learning process of a novel backpropagation algorithm in which both self-adjusting activation and learning rate functions are designated. The learning speed and quality of the fuzzy neural networks are proved to be superior to those of standard backpropagation and other methods using changeable learning rates or activation functions. The proposed networks are currently developed and implemented in a C language environment. Experimental and analytical results demonstrate that the FNN technique is a novel and potentially powerful approach to intelligent neural networks.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.287133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.287133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

基于模糊系统和神经网络技术,提出了一种模糊神经网络技术。利用人类的知识和专业知识,应用FNN技术加速了一种新的反向传播算法的学习过程,该算法同时指定了自调节激活和学习率函数。结果表明,模糊神经网络的学习速度和学习质量优于标准反向传播方法和其他使用可变学习率或激活函数的方法。所提出的网络目前是在C语言环境中开发和实现的。实验和分析结果表明,FNN技术是一种新颖的、潜在的强大的智能神经网络方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fuzzy neural networks technique with fast backpropagation learning
A fuzzy neural network (FNN) technique is presented based on fuzzy systems and neural network technologies. Utilizing human knowledge and expertise, the FNN technique is applied to accelerate the learning process of a novel backpropagation algorithm in which both self-adjusting activation and learning rate functions are designated. The learning speed and quality of the fuzzy neural networks are proved to be superior to those of standard backpropagation and other methods using changeable learning rates or activation functions. The proposed networks are currently developed and implemented in a C language environment. Experimental and analytical results demonstrate that the FNN technique is a novel and potentially powerful approach to intelligent neural networks.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信