基于HOG特征的电网关键区域越界检测研究与应用

Mingrui Sha, Zhenhao Gu
{"title":"基于HOG特征的电网关键区域越界检测研究与应用","authors":"Mingrui Sha, Zhenhao Gu","doi":"10.1109/ICTech55460.2022.00027","DOIUrl":null,"url":null,"abstract":"With the rapid development of electric power industry and the acceleration of the marketization process of electric power system reform, the importance of electric power safety production is more prominent. The traditional electronic fence mostly adopts radio frequency or infrared monitoring, which cannot be accurately identified. False positives will be generated when animals or inanimate objects enter the monitoring area. This paper aims to use interval capture method to extract feature through HOG, PCA and other feature extraction methods in real time, and then use SVM classifier to discriminate for the transgression detection system in key monitoring areas of power grid. In order to achieve the key areas of personnel crossing the precise monitoring.","PeriodicalId":290836,"journal":{"name":"2022 11th International Conference of Information and Communication Technology (ICTech))","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and Application of HOG Feature Based Power Grid Key Area Out of Bounds Detection\",\"authors\":\"Mingrui Sha, Zhenhao Gu\",\"doi\":\"10.1109/ICTech55460.2022.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of electric power industry and the acceleration of the marketization process of electric power system reform, the importance of electric power safety production is more prominent. The traditional electronic fence mostly adopts radio frequency or infrared monitoring, which cannot be accurately identified. False positives will be generated when animals or inanimate objects enter the monitoring area. This paper aims to use interval capture method to extract feature through HOG, PCA and other feature extraction methods in real time, and then use SVM classifier to discriminate for the transgression detection system in key monitoring areas of power grid. In order to achieve the key areas of personnel crossing the precise monitoring.\",\"PeriodicalId\":290836,\"journal\":{\"name\":\"2022 11th International Conference of Information and Communication Technology (ICTech))\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference of Information and Communication Technology (ICTech))\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTech55460.2022.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference of Information and Communication Technology (ICTech))","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTech55460.2022.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着电力工业的快速发展和电力体制改革市场化进程的加快,电力安全生产的重要性更加突出。传统的电子围栏多采用射频或红外监控,无法准确识别。当动物或无生命物体进入监测区域时,会产生误报。本文旨在利用区间捕获方法,通过HOG、PCA等特征提取方法实时提取特征,然后利用SVM分类器对电网重点监测区域的越轨检测系统进行判别。从而实现对关键区域人员穿越的精确监控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research and Application of HOG Feature Based Power Grid Key Area Out of Bounds Detection
With the rapid development of electric power industry and the acceleration of the marketization process of electric power system reform, the importance of electric power safety production is more prominent. The traditional electronic fence mostly adopts radio frequency or infrared monitoring, which cannot be accurately identified. False positives will be generated when animals or inanimate objects enter the monitoring area. This paper aims to use interval capture method to extract feature through HOG, PCA and other feature extraction methods in real time, and then use SVM classifier to discriminate for the transgression detection system in key monitoring areas of power grid. In order to achieve the key areas of personnel crossing the precise monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信