介绍离散Morphlet变换及其在语音转换中的应用

L. S. Vieira, R. Guido, Shi-Huang Chen
{"title":"介绍离散Morphlet变换及其在语音转换中的应用","authors":"L. S. Vieira, R. Guido, Shi-Huang Chen","doi":"10.1109/ISM.2011.93","DOIUrl":null,"url":null,"abstract":"This paper introduces Morph let, a new wavelet transform adapted for voice conversion purposes. The paradigm of joint time-frequency-shape analysis of discrete-time signals, possible by means of the Discrete Shape let Transform (DST), is the basis used for the construction of Morph lets. The results assure the efficacy of the proposed transform, which is able, by itself and with the help of no other tool such as a neural network, to carry out the task, totally.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing the Discrete Morphlet Transform and its Applications for Voice Conversion\",\"authors\":\"L. S. Vieira, R. Guido, Shi-Huang Chen\",\"doi\":\"10.1109/ISM.2011.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Morph let, a new wavelet transform adapted for voice conversion purposes. The paradigm of joint time-frequency-shape analysis of discrete-time signals, possible by means of the Discrete Shape let Transform (DST), is the basis used for the construction of Morph lets. The results assure the efficacy of the proposed transform, which is able, by itself and with the help of no other tool such as a neural network, to carry out the task, totally.\",\"PeriodicalId\":339410,\"journal\":{\"name\":\"2011 IEEE International Symposium on Multimedia\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2011.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的用于语音转换的小波变换——Morph let。离散时间信号的联合时-频-形分析范式,可能通过离散形状let变换(DST),是用于构造Morph let的基础。结果保证了所提出的变换的有效性,该变换可以单独完成任务,而不需要其他工具(如神经网络)的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introducing the Discrete Morphlet Transform and its Applications for Voice Conversion
This paper introduces Morph let, a new wavelet transform adapted for voice conversion purposes. The paradigm of joint time-frequency-shape analysis of discrete-time signals, possible by means of the Discrete Shape let Transform (DST), is the basis used for the construction of Morph lets. The results assure the efficacy of the proposed transform, which is able, by itself and with the help of no other tool such as a neural network, to carry out the task, totally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信