{"title":"基于晶闸管的超快机电断路器实时直流电网仿真的电热瞬态行为建模","authors":"Ning Lin, V. Dinavahi","doi":"10.1109/PESGM41954.2020.9281802","DOIUrl":null,"url":null,"abstract":"The accuracy of power electronics simulation relies on the semiconductor switch model employed. Thus, in this work where an ultrafast mechatronic circuit breaker (UFMCB) is implemented in real-time on the field-programmable gate array, a detailed nonlinear thyristor model is proposed for extra device-level information regarding design evaluation. The cascaded thyristors impose a heavy computational burden on the UFMCB simulation, and node elimination is achieved following the proposal of a scalable thyristor model. For the convenience of the circuit breaker’s integration into DC grid, a pair of coupled voltage-current sources is inserted as its interface, which achieves a reduction in the dimension of system admittance matrix, and the subsequent proposal of a relaxed scalar Newton-Raphson method further expedites the simulation by decomposing the nodal matrix equation. Meanwhile, the modular multilevel converter as a DC grid terminal adopts half-bridge and clamped double submodule topologies to test system performance in conjunction with the UFMCB. Realtime execution is achieved and the results are validated by ANSYS/Simplorer and PSCAD/EMTDC in device- and system-level, respectively.","PeriodicalId":106476,"journal":{"name":"2020 IEEE Power & Energy Society General Meeting (PESGM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electro-Thermal Transient Behavioral Modeling of Thyristor-Based Ultrafast Mechatronic Circuit Breaker for Real-Time DC Grid Emulation\",\"authors\":\"Ning Lin, V. Dinavahi\",\"doi\":\"10.1109/PESGM41954.2020.9281802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy of power electronics simulation relies on the semiconductor switch model employed. Thus, in this work where an ultrafast mechatronic circuit breaker (UFMCB) is implemented in real-time on the field-programmable gate array, a detailed nonlinear thyristor model is proposed for extra device-level information regarding design evaluation. The cascaded thyristors impose a heavy computational burden on the UFMCB simulation, and node elimination is achieved following the proposal of a scalable thyristor model. For the convenience of the circuit breaker’s integration into DC grid, a pair of coupled voltage-current sources is inserted as its interface, which achieves a reduction in the dimension of system admittance matrix, and the subsequent proposal of a relaxed scalar Newton-Raphson method further expedites the simulation by decomposing the nodal matrix equation. Meanwhile, the modular multilevel converter as a DC grid terminal adopts half-bridge and clamped double submodule topologies to test system performance in conjunction with the UFMCB. Realtime execution is achieved and the results are validated by ANSYS/Simplorer and PSCAD/EMTDC in device- and system-level, respectively.\",\"PeriodicalId\":106476,\"journal\":{\"name\":\"2020 IEEE Power & Energy Society General Meeting (PESGM)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Power & Energy Society General Meeting (PESGM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM41954.2020.9281802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM41954.2020.9281802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electro-Thermal Transient Behavioral Modeling of Thyristor-Based Ultrafast Mechatronic Circuit Breaker for Real-Time DC Grid Emulation
The accuracy of power electronics simulation relies on the semiconductor switch model employed. Thus, in this work where an ultrafast mechatronic circuit breaker (UFMCB) is implemented in real-time on the field-programmable gate array, a detailed nonlinear thyristor model is proposed for extra device-level information regarding design evaluation. The cascaded thyristors impose a heavy computational burden on the UFMCB simulation, and node elimination is achieved following the proposal of a scalable thyristor model. For the convenience of the circuit breaker’s integration into DC grid, a pair of coupled voltage-current sources is inserted as its interface, which achieves a reduction in the dimension of system admittance matrix, and the subsequent proposal of a relaxed scalar Newton-Raphson method further expedites the simulation by decomposing the nodal matrix equation. Meanwhile, the modular multilevel converter as a DC grid terminal adopts half-bridge and clamped double submodule topologies to test system performance in conjunction with the UFMCB. Realtime execution is achieved and the results are validated by ANSYS/Simplorer and PSCAD/EMTDC in device- and system-level, respectively.