基于个人用户特征的信息传播方法研究

Lejun Zhang, Weijie Zhao, Chunhui Zhao
{"title":"基于个人用户特征的信息传播方法研究","authors":"Lejun Zhang, Weijie Zhao, Chunhui Zhao","doi":"10.1109/CIS.2017.00103","DOIUrl":null,"url":null,"abstract":"At present, the research of information dissemination model based on social platform mainly focuses on the influence of social network structure and information content on information dissemination, but it is not comprehensive enough for user characteristics. And all users use the same prediction model, which will lead to the prediction results of different users will appear homogeneity. This paper focuses on the microblogging forwarding will be affected by what the individual characteristics, and then uses each user's history data to generate an independent prediction model for each user. For users with insufficient historical information data, this paper proposes a scheme to predict microblogging forwarding behavior by neighboring friends.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Information Propagation Method Based on Individual User Characteristics\",\"authors\":\"Lejun Zhang, Weijie Zhao, Chunhui Zhao\",\"doi\":\"10.1109/CIS.2017.00103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the research of information dissemination model based on social platform mainly focuses on the influence of social network structure and information content on information dissemination, but it is not comprehensive enough for user characteristics. And all users use the same prediction model, which will lead to the prediction results of different users will appear homogeneity. This paper focuses on the microblogging forwarding will be affected by what the individual characteristics, and then uses each user's history data to generate an independent prediction model for each user. For users with insufficient historical information data, this paper proposes a scheme to predict microblogging forwarding behavior by neighboring friends.\",\"PeriodicalId\":304958,\"journal\":{\"name\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2017.00103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,基于社交平台的信息传播模型研究主要集中在社交网络结构和信息内容对信息传播的影响上,对用户特征研究不够全面。而所有的用户使用相同的预测模型,这将导致不同用户的预测结果出现同质性。本文主要研究微博转发会受到哪些个体特征的影响,然后利用每个用户的历史数据对每个用户生成独立的预测模型。针对历史信息数据不足的用户,本文提出了一种预测邻居朋友微博转发行为的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Information Propagation Method Based on Individual User Characteristics
At present, the research of information dissemination model based on social platform mainly focuses on the influence of social network structure and information content on information dissemination, but it is not comprehensive enough for user characteristics. And all users use the same prediction model, which will lead to the prediction results of different users will appear homogeneity. This paper focuses on the microblogging forwarding will be affected by what the individual characteristics, and then uses each user's history data to generate an independent prediction model for each user. For users with insufficient historical information data, this paper proposes a scheme to predict microblogging forwarding behavior by neighboring friends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信