Mofadal Alymani, Mohsen H. Alhazmi, Alhussain Almarhabi, Hatim Alhazmi, Abdullah Samarkandi, Yu-dong Yao
{"title":"基于深度学习的专家k因子估计","authors":"Mofadal Alymani, Mohsen H. Alhazmi, Alhussain Almarhabi, Hatim Alhazmi, Abdullah Samarkandi, Yu-dong Yao","doi":"10.1109/WOCC48579.2020.9114948","DOIUrl":null,"url":null,"abstract":"Wireless communications systems design and its performance depend on the wireless fading channels, which are often characterized using a Rician probability function. A Rician K-factor is used to describe the fading severity in a Rician fading channel and is used in the system design and performance evaluation. Therefore, the estimation of the Rician K-factor is important in wireless communications research and development. Traditionally, a Rician K-factor equation, the statistics of the instantaneous frequency of the received signal with a lookup table, or the James-Stein estimator with the maximum likelihood estimation is used for the K-factor estimation. In this paper, we explore the use of deep learning for K-factor estimation. Specifically, we use the convolutional neural network (CNN) to estimate the Rician K-factor from a waveform signal in a Rician channel. Numerical results demonstrate its good performance in estimating the K-factor of the Rician channel.","PeriodicalId":187607,"journal":{"name":"2020 29th Wireless and Optical Communications Conference (WOCC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Rician K-Factor Estimation Using Deep Learning\",\"authors\":\"Mofadal Alymani, Mohsen H. Alhazmi, Alhussain Almarhabi, Hatim Alhazmi, Abdullah Samarkandi, Yu-dong Yao\",\"doi\":\"10.1109/WOCC48579.2020.9114948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless communications systems design and its performance depend on the wireless fading channels, which are often characterized using a Rician probability function. A Rician K-factor is used to describe the fading severity in a Rician fading channel and is used in the system design and performance evaluation. Therefore, the estimation of the Rician K-factor is important in wireless communications research and development. Traditionally, a Rician K-factor equation, the statistics of the instantaneous frequency of the received signal with a lookup table, or the James-Stein estimator with the maximum likelihood estimation is used for the K-factor estimation. In this paper, we explore the use of deep learning for K-factor estimation. Specifically, we use the convolutional neural network (CNN) to estimate the Rician K-factor from a waveform signal in a Rician channel. Numerical results demonstrate its good performance in estimating the K-factor of the Rician channel.\",\"PeriodicalId\":187607,\"journal\":{\"name\":\"2020 29th Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 29th Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC48579.2020.9114948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC48579.2020.9114948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wireless communications systems design and its performance depend on the wireless fading channels, which are often characterized using a Rician probability function. A Rician K-factor is used to describe the fading severity in a Rician fading channel and is used in the system design and performance evaluation. Therefore, the estimation of the Rician K-factor is important in wireless communications research and development. Traditionally, a Rician K-factor equation, the statistics of the instantaneous frequency of the received signal with a lookup table, or the James-Stein estimator with the maximum likelihood estimation is used for the K-factor estimation. In this paper, we explore the use of deep learning for K-factor estimation. Specifically, we use the convolutional neural network (CNN) to estimate the Rician K-factor from a waveform signal in a Rician channel. Numerical results demonstrate its good performance in estimating the K-factor of the Rician channel.