考虑耦合动力学的多球机器人自适应RFWCMAC协同编队控制

Ching-Chih Tsai, C. H. Chiang, Feng-Chun Tai, Kao-Shing Hwang
{"title":"考虑耦合动力学的多球机器人自适应RFWCMAC协同编队控制","authors":"Ching-Chih Tsai, C. H. Chiang, Feng-Chun Tai, Kao-Shing Hwang","doi":"10.1109/ICCSS.2015.7281150","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent consensus-based cooperative formation control using recurrent fuzzy wavelet cerebellar-model-articulation-controller (RFWCMAC) for a team of uncertain multiple ballbots. The dynamic model of each ballbot is formulated as one multivariable second-order underactuated dynamic system model, and the multirobot system is modeled by graph theory. By online learning the system uncertainties using RFWCMAC, an intelligent consensus-based cooperative formation control approach is presented using the Lyapunov stability theory and sliding-mode control approach, in order to carry out formation control in the presence of uncertainties. Simulations are conducted to show the effectiveness and merits of the proposed method.","PeriodicalId":299619,"journal":{"name":"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Adaptive RFWCMAC cooperative formation control for multiple ballbots incorporated with coupling dynamics\",\"authors\":\"Ching-Chih Tsai, C. H. Chiang, Feng-Chun Tai, Kao-Shing Hwang\",\"doi\":\"10.1109/ICCSS.2015.7281150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an intelligent consensus-based cooperative formation control using recurrent fuzzy wavelet cerebellar-model-articulation-controller (RFWCMAC) for a team of uncertain multiple ballbots. The dynamic model of each ballbot is formulated as one multivariable second-order underactuated dynamic system model, and the multirobot system is modeled by graph theory. By online learning the system uncertainties using RFWCMAC, an intelligent consensus-based cooperative formation control approach is presented using the Lyapunov stability theory and sliding-mode control approach, in order to carry out formation control in the presence of uncertainties. Simulations are conducted to show the effectiveness and merits of the proposed method.\",\"PeriodicalId\":299619,\"journal\":{\"name\":\"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSS.2015.7281150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS.2015.7281150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

针对不确定多球机器人群体,提出了一种基于循环模糊小波小脑模型-关节控制器(RFWCMAC)的基于智能共识的协同编队控制方法。将每个球机器人的动力学模型表述为一个多变量二阶欠驱动动力学系统模型,并利用图论对多机器人系统进行建模。通过RFWCMAC在线学习系统的不确定性,利用Lyapunov稳定性理论和滑模控制方法,提出了一种基于智能共识的协同编队控制方法,实现了存在不确定性条件下的编队控制。仿真结果表明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive RFWCMAC cooperative formation control for multiple ballbots incorporated with coupling dynamics
This paper presents an intelligent consensus-based cooperative formation control using recurrent fuzzy wavelet cerebellar-model-articulation-controller (RFWCMAC) for a team of uncertain multiple ballbots. The dynamic model of each ballbot is formulated as one multivariable second-order underactuated dynamic system model, and the multirobot system is modeled by graph theory. By online learning the system uncertainties using RFWCMAC, an intelligent consensus-based cooperative formation control approach is presented using the Lyapunov stability theory and sliding-mode control approach, in order to carry out formation control in the presence of uncertainties. Simulations are conducted to show the effectiveness and merits of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信