Arimoto算法的随机解释

Sergey Tridenski, R. Zamir
{"title":"Arimoto算法的随机解释","authors":"Sergey Tridenski, R. Zamir","doi":"10.1109/ITW.2015.7133141","DOIUrl":null,"url":null,"abstract":"The Arimoto algorithm computes the Gallager function maxQ E0(ρ, Q) for a given channel P (y | x) and parameter ρ, by means of alternating maximization. Along the way, it generates a sequence of input distributions Q1(x), Q2(x), ..., that converges to the maximizing input Q*(x). We propose a stochastic interpretation for the Arimoto algorithm. We show that for a random (i.i.d.) codebook with a distribution Qk(x), the next distribution Qk+1(x) in the Arimoto algorithm is equal to the type (Q') of the feasible transmitted codeword that maximizes the conditional Gallager exponent (conditioned on a specific transmitted codeword type Q'). This interpretation is a first step toward finding a stochastic mechanism for on-line channel input adaptation.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stochastic interpretation for the Arimoto algorithm\",\"authors\":\"Sergey Tridenski, R. Zamir\",\"doi\":\"10.1109/ITW.2015.7133141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Arimoto algorithm computes the Gallager function maxQ E0(ρ, Q) for a given channel P (y | x) and parameter ρ, by means of alternating maximization. Along the way, it generates a sequence of input distributions Q1(x), Q2(x), ..., that converges to the maximizing input Q*(x). We propose a stochastic interpretation for the Arimoto algorithm. We show that for a random (i.i.d.) codebook with a distribution Qk(x), the next distribution Qk+1(x) in the Arimoto algorithm is equal to the type (Q') of the feasible transmitted codeword that maximizes the conditional Gallager exponent (conditioned on a specific transmitted codeword type Q'). This interpretation is a first step toward finding a stochastic mechanism for on-line channel input adaptation.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Arimoto算法通过交替最大化的方法计算给定信道P (y | x)和参数ρ的Gallager函数maxqe0 (ρ, Q)。在此过程中,它生成一系列输入分布Q1(x), Q2(x),…,它收敛于最大输入Q*(x)。我们提出了Arimoto算法的随机解释。我们证明了对于一个随机(i.i.d)码本,其分布为Qk(x), Arimoto算法中的下一个分布Qk+1(x)等于使条件Gallager指数(以特定传输码字类型Q'为条件)最大化的可行传输码字的类型(Q')。这种解释是寻找在线通道输入适应的随机机制的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic interpretation for the Arimoto algorithm
The Arimoto algorithm computes the Gallager function maxQ E0(ρ, Q) for a given channel P (y | x) and parameter ρ, by means of alternating maximization. Along the way, it generates a sequence of input distributions Q1(x), Q2(x), ..., that converges to the maximizing input Q*(x). We propose a stochastic interpretation for the Arimoto algorithm. We show that for a random (i.i.d.) codebook with a distribution Qk(x), the next distribution Qk+1(x) in the Arimoto algorithm is equal to the type (Q') of the feasible transmitted codeword that maximizes the conditional Gallager exponent (conditioned on a specific transmitted codeword type Q'). This interpretation is a first step toward finding a stochastic mechanism for on-line channel input adaptation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信