基于pso优化神经网络的时间序列预测

Daniel Alba-Cuellar, A. Zavala, A. H. Aguirre, E. E. P. D. L. Sentí, E. Díaz-Díaz
{"title":"基于pso优化神经网络的时间序列预测","authors":"Daniel Alba-Cuellar, A. Zavala, A. H. Aguirre, E. E. P. D. L. Sentí, E. Díaz-Díaz","doi":"10.1109/MICAI.2014.22","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new methodology to forecast values for univariate time series datasets, based on a Feed Forward Neural Network (FFNN) ensemble. Each ensemble element is trained with the Particle Swarm Optimization (PSO) algorithm, this ensemble produces a final sequence of time series forecasts via a bootstrapping procedure. Our proposed methodology is compared against Auto-Regressive Integrated Moving Average (ARIMA) models. This experiment gives us a good idea of how effective soft computing techniques can be in the field of time series modeling. The results obtained show empirically that our proposed methodology is robust and produces useful forecast error bounds that provide a clear picture of a time series' future movements.","PeriodicalId":189896,"journal":{"name":"2014 13th Mexican International Conference on Artificial Intelligence","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time Series Forecasting with PSO-Optimized Neural Networks\",\"authors\":\"Daniel Alba-Cuellar, A. Zavala, A. H. Aguirre, E. E. P. D. L. Sentí, E. Díaz-Díaz\",\"doi\":\"10.1109/MICAI.2014.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new methodology to forecast values for univariate time series datasets, based on a Feed Forward Neural Network (FFNN) ensemble. Each ensemble element is trained with the Particle Swarm Optimization (PSO) algorithm, this ensemble produces a final sequence of time series forecasts via a bootstrapping procedure. Our proposed methodology is compared against Auto-Regressive Integrated Moving Average (ARIMA) models. This experiment gives us a good idea of how effective soft computing techniques can be in the field of time series modeling. The results obtained show empirically that our proposed methodology is robust and produces useful forecast error bounds that provide a clear picture of a time series' future movements.\",\"PeriodicalId\":189896,\"journal\":{\"name\":\"2014 13th Mexican International Conference on Artificial Intelligence\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 13th Mexican International Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2014.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 13th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2014.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于前馈神经网络(FFNN)集成的单变量时间序列数据集预测值的新方法。采用粒子群优化算法对集合元素进行训练,并通过自举过程生成最终的时间序列预测序列。我们提出的方法与自回归综合移动平均(ARIMA)模型进行了比较。这个实验让我们很好地了解了软计算技术在时间序列建模领域的有效性。结果表明,我们提出的方法是稳健的,并产生了有用的预测误差界限,提供了一个清晰的画面,一个时间序列的未来运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Series Forecasting with PSO-Optimized Neural Networks
In this paper, we propose a new methodology to forecast values for univariate time series datasets, based on a Feed Forward Neural Network (FFNN) ensemble. Each ensemble element is trained with the Particle Swarm Optimization (PSO) algorithm, this ensemble produces a final sequence of time series forecasts via a bootstrapping procedure. Our proposed methodology is compared against Auto-Regressive Integrated Moving Average (ARIMA) models. This experiment gives us a good idea of how effective soft computing techniques can be in the field of time series modeling. The results obtained show empirically that our proposed methodology is robust and produces useful forecast error bounds that provide a clear picture of a time series' future movements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信