用于实体类型预测的通用模式

Limin Yao, S. Riedel, A. McCallum
{"title":"用于实体类型预测的通用模式","authors":"Limin Yao, S. Riedel, A. McCallum","doi":"10.1145/2509558.2509572","DOIUrl":null,"url":null,"abstract":"Categorizing entities by their types is useful in many applications, including knowledge base construction, relation extraction and query intent prediction. Fine-grained entity type ontologies are especially valuable, but typically difficult to design because of unavoidable quandaries about level of detail and boundary cases. Automatically classifying entities by type is challenging as well, usually involving hand-labeling data and training a supervised predictor.\n This paper presents a universal schema approach to fine-grained entity type prediction. The set of types is taken as the union of textual surface patterns (e.g. appositives) and pre-defined types from available databases (e.g. Freebase)---yielding not tens or hundreds of types, but more than ten thousands of entity types, such as financier, criminologist, and musical trio. We robustly learn mutual implication among this large union by learning latent vector embeddings from probabilistic matrix factorization, thus avoiding the need for hand-labeled data. Experimental results demonstrate more than 30% reduction in error versus a traditional classification approach on predicting fine-grained entities types.","PeriodicalId":371465,"journal":{"name":"Conference on Automated Knowledge Base Construction","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Universal schema for entity type prediction\",\"authors\":\"Limin Yao, S. Riedel, A. McCallum\",\"doi\":\"10.1145/2509558.2509572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Categorizing entities by their types is useful in many applications, including knowledge base construction, relation extraction and query intent prediction. Fine-grained entity type ontologies are especially valuable, but typically difficult to design because of unavoidable quandaries about level of detail and boundary cases. Automatically classifying entities by type is challenging as well, usually involving hand-labeling data and training a supervised predictor.\\n This paper presents a universal schema approach to fine-grained entity type prediction. The set of types is taken as the union of textual surface patterns (e.g. appositives) and pre-defined types from available databases (e.g. Freebase)---yielding not tens or hundreds of types, but more than ten thousands of entity types, such as financier, criminologist, and musical trio. We robustly learn mutual implication among this large union by learning latent vector embeddings from probabilistic matrix factorization, thus avoiding the need for hand-labeled data. Experimental results demonstrate more than 30% reduction in error versus a traditional classification approach on predicting fine-grained entities types.\",\"PeriodicalId\":371465,\"journal\":{\"name\":\"Conference on Automated Knowledge Base Construction\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Automated Knowledge Base Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2509558.2509572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Automated Knowledge Base Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2509558.2509572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

根据实体的类型对实体进行分类在很多应用中都很有用,包括知识库的构建、关系提取和查询意图预测。细粒度实体类型本体特别有价值,但通常难以设计,因为在细节级别和边界情况方面存在不可避免的困境。按类型自动分类实体也很有挑战性,通常涉及手动标记数据和训练监督预测器。提出了一种用于细粒度实体类型预测的通用模式方法。类型集是文本表面模式(例如同位词)和来自可用数据库(例如Freebase)的预定义类型的结合——产生的不是数十或数百种类型,而是超过上万种实体类型,例如金融家、犯罪学家和音乐三重奏。我们通过学习概率矩阵分解的潜在向量嵌入来鲁棒地学习这个大联合之间的相互含义,从而避免了对手工标记数据的需要。实验结果表明,在预测细粒度实体类型方面,与传统分类方法相比,误差降低了30%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal schema for entity type prediction
Categorizing entities by their types is useful in many applications, including knowledge base construction, relation extraction and query intent prediction. Fine-grained entity type ontologies are especially valuable, but typically difficult to design because of unavoidable quandaries about level of detail and boundary cases. Automatically classifying entities by type is challenging as well, usually involving hand-labeling data and training a supervised predictor. This paper presents a universal schema approach to fine-grained entity type prediction. The set of types is taken as the union of textual surface patterns (e.g. appositives) and pre-defined types from available databases (e.g. Freebase)---yielding not tens or hundreds of types, but more than ten thousands of entity types, such as financier, criminologist, and musical trio. We robustly learn mutual implication among this large union by learning latent vector embeddings from probabilistic matrix factorization, thus avoiding the need for hand-labeled data. Experimental results demonstrate more than 30% reduction in error versus a traditional classification approach on predicting fine-grained entities types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信