NASA兰利不确定性量化挑战的分布鲁棒优化方法

Yuanlu Bai, Zhiyuan Huang, H. Lam
{"title":"NASA兰利不确定性量化挑战的分布鲁棒优化方法","authors":"Yuanlu Bai, Zhiyuan Huang, H. Lam","doi":"10.3850/978-981-14-8593-0_5639-CD","DOIUrl":null,"url":null,"abstract":"We study a methodology to tackle the NASA Langley Uncertainty Quantification Challenge problem, based on an integration of robust optimization, more specifically a recent line of research known as distributionally robust optimization, and importance sampling in Monte Carlo simulation. The main computation machinery in this integrated methodology boils down to solving sampled linear programs. We will illustrate both our numerical performances and theoretical statistical guarantees obtained via connections to nonparametric hypothesis testing.","PeriodicalId":201963,"journal":{"name":"Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Distributionally Robust Optimization Approach to the NASA Langley Uncertainty Quantification Challenge\",\"authors\":\"Yuanlu Bai, Zhiyuan Huang, H. Lam\",\"doi\":\"10.3850/978-981-14-8593-0_5639-CD\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a methodology to tackle the NASA Langley Uncertainty Quantification Challenge problem, based on an integration of robust optimization, more specifically a recent line of research known as distributionally robust optimization, and importance sampling in Monte Carlo simulation. The main computation machinery in this integrated methodology boils down to solving sampled linear programs. We will illustrate both our numerical performances and theoretical statistical guarantees obtained via connections to nonparametric hypothesis testing.\",\"PeriodicalId\":201963,\"journal\":{\"name\":\"Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3850/978-981-14-8593-0_5639-CD\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3850/978-981-14-8593-0_5639-CD","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了一种解决NASA兰利不确定性量化挑战问题的方法,该方法基于鲁棒优化的集成,更具体地说,是最近的一项研究,称为分布鲁棒优化,以及蒙特卡罗模拟中的重要抽样。这种综合方法的主要计算机制归结为求解抽样线性规划。我们将说明我们的数值性能和通过连接非参数假设检验获得的理论统计保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Distributionally Robust Optimization Approach to the NASA Langley Uncertainty Quantification Challenge
We study a methodology to tackle the NASA Langley Uncertainty Quantification Challenge problem, based on an integration of robust optimization, more specifically a recent line of research known as distributionally robust optimization, and importance sampling in Monte Carlo simulation. The main computation machinery in this integrated methodology boils down to solving sampled linear programs. We will illustrate both our numerical performances and theoretical statistical guarantees obtained via connections to nonparametric hypothesis testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信