基于随机鲁棒性分析的高超声速飞行器多变量反馈控制设计

Xiaomeng Yin, Lei Liu, Yongji Wang
{"title":"基于随机鲁棒性分析的高超声速飞行器多变量反馈控制设计","authors":"Xiaomeng Yin, Lei Liu, Yongji Wang","doi":"10.1109/ICMIC.2018.8529998","DOIUrl":null,"url":null,"abstract":"For the multivariable coupling hypersonic vehicle (HV) dynamics, it is required to achieve a strong robustness and high-accuracy tracking under aerodynamic uncertainties. In this paper, we propose a stochastic robustness analysis-based multivariable feedback control method for HV to satisfy design requirements with high probability. First, the HV dynamic characteristics are analyzed. Then, we model the relation between controller parameters and the robustness evaluated by the probability of instability and violation of requirements. Next, by maximizing robustness, the optimal parameters are searched for using particle swarm optimization. To reach a prescribed probability level, Hoeffding inequality is applied to set the sampling size of Monte Carlo evaluation. Simulation is conducted on a six-degree-of-freedom nonlinear model of HV. By making a full use of the uncertainty distribution, the proposed method effectively improves the attitude tracking performance of HV while guarantees robust stability.","PeriodicalId":262938,"journal":{"name":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariable Feedback Control Design for Hypersonic Vehicles Based on Stochastic Robustness Analysis\",\"authors\":\"Xiaomeng Yin, Lei Liu, Yongji Wang\",\"doi\":\"10.1109/ICMIC.2018.8529998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the multivariable coupling hypersonic vehicle (HV) dynamics, it is required to achieve a strong robustness and high-accuracy tracking under aerodynamic uncertainties. In this paper, we propose a stochastic robustness analysis-based multivariable feedback control method for HV to satisfy design requirements with high probability. First, the HV dynamic characteristics are analyzed. Then, we model the relation between controller parameters and the robustness evaluated by the probability of instability and violation of requirements. Next, by maximizing robustness, the optimal parameters are searched for using particle swarm optimization. To reach a prescribed probability level, Hoeffding inequality is applied to set the sampling size of Monte Carlo evaluation. Simulation is conducted on a six-degree-of-freedom nonlinear model of HV. By making a full use of the uncertainty distribution, the proposed method effectively improves the attitude tracking performance of HV while guarantees robust stability.\",\"PeriodicalId\":262938,\"journal\":{\"name\":\"2018 10th International Conference on Modelling, Identification and Control (ICMIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Modelling, Identification and Control (ICMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIC.2018.8529998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2018.8529998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于多变量耦合高超声速飞行器(HV)动力学,需要在气动不确定性条件下实现强鲁棒性和高精度跟踪。本文提出了一种基于随机鲁棒性分析的高压电机多变量反馈控制方法,以保证高概率满足设计要求。首先,分析了高压电机的动态特性。然后,我们建立了控制器参数与鲁棒性之间的关系模型,以不稳定和违反要求的概率来评估鲁棒性。其次,以鲁棒性最大化为目标,利用粒子群算法寻找最优参数。为了达到规定的概率水平,应用Hoeffding不等式来设置蒙特卡罗评估的样本量。在六自由度高压非线性模型上进行了仿真。该方法充分利用不确定性分布,在保证鲁棒稳定性的同时,有效地提高了HV的姿态跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariable Feedback Control Design for Hypersonic Vehicles Based on Stochastic Robustness Analysis
For the multivariable coupling hypersonic vehicle (HV) dynamics, it is required to achieve a strong robustness and high-accuracy tracking under aerodynamic uncertainties. In this paper, we propose a stochastic robustness analysis-based multivariable feedback control method for HV to satisfy design requirements with high probability. First, the HV dynamic characteristics are analyzed. Then, we model the relation between controller parameters and the robustness evaluated by the probability of instability and violation of requirements. Next, by maximizing robustness, the optimal parameters are searched for using particle swarm optimization. To reach a prescribed probability level, Hoeffding inequality is applied to set the sampling size of Monte Carlo evaluation. Simulation is conducted on a six-degree-of-freedom nonlinear model of HV. By making a full use of the uncertainty distribution, the proposed method effectively improves the attitude tracking performance of HV while guarantees robust stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信