基于视频图像的远程全方位车辆平台SLAM配置

P. I. Chang, Y. Shi, S. C. Fan-Chiang, C. Lan
{"title":"基于视频图像的远程全方位车辆平台SLAM配置","authors":"P. I. Chang, Y. Shi, S. C. Fan-Chiang, C. Lan","doi":"10.1109/ARIS50834.2020.9205779","DOIUrl":null,"url":null,"abstract":"This paper attempts to fully reconstruct a local mapping for robotic vehicle platforms, by use of 3D commercial camera. The reconstructed SLAM is verified by the global positioning of the surrounding with a-priori knowledge. While the whole omni-directional vehicle is designed and built in-house to maximize utility of all the signals available from the system. The mapping error for 2D for localization is estimated at 5% showing promise for this approach.","PeriodicalId":423389,"journal":{"name":"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SLAM Configuration from Video Images for Remote Omni-direction Vehicle Platform\",\"authors\":\"P. I. Chang, Y. Shi, S. C. Fan-Chiang, C. Lan\",\"doi\":\"10.1109/ARIS50834.2020.9205779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper attempts to fully reconstruct a local mapping for robotic vehicle platforms, by use of 3D commercial camera. The reconstructed SLAM is verified by the global positioning of the surrounding with a-priori knowledge. While the whole omni-directional vehicle is designed and built in-house to maximize utility of all the signals available from the system. The mapping error for 2D for localization is estimated at 5% showing promise for this approach.\",\"PeriodicalId\":423389,\"journal\":{\"name\":\"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARIS50834.2020.9205779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARIS50834.2020.9205779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文试图利用三维商业摄像机对机器人车辆平台的局部地图进行完全重建。利用先验知识对周围环境进行全局定位,验证重构后的SLAM。而整个全向车辆是内部设计和制造的,以最大限度地利用系统提供的所有信号。2D定位的映射误差估计为5%,显示出这种方法的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SLAM Configuration from Video Images for Remote Omni-direction Vehicle Platform
This paper attempts to fully reconstruct a local mapping for robotic vehicle platforms, by use of 3D commercial camera. The reconstructed SLAM is verified by the global positioning of the surrounding with a-priori knowledge. While the whole omni-directional vehicle is designed and built in-house to maximize utility of all the signals available from the system. The mapping error for 2D for localization is estimated at 5% showing promise for this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信