{"title":"在线Web系统自动配置的强化学习方法","authors":"Xiangping Bu, J. Rao, Chengzhong Xu","doi":"10.1109/ICDCS.2009.76","DOIUrl":null,"url":null,"abstract":"In a web system, configuration is crucial to the performance and service availability. It is a challenge, not only because of the dynamics of Internet traffic, but also the dynamic virtual machine environment the system tends to be run on. In this paper, we propose a reinforcement learning approach for autonomic configuration and reconfiguration of multi-tier web systems. It is able to adapt performance parameter settings not only to the change of workload, but also to the change of virtual machine configurations. The RL approach is enhanced with an efficient initialization policy to reduce the learning time for online decision. The approach is evaluated using TPC-W benchmark on a three-tier website hosted on a Xen-based virtual machine environment. Experiment results demonstrate that the approach can autoconfigure the web system dynamically in response to the change in both workload and VM resource. It can drive the system into a near-optimal configuration setting in less than 25 trial-and-error iterations.","PeriodicalId":387968,"journal":{"name":"2009 29th IEEE International Conference on Distributed Computing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":"{\"title\":\"A Reinforcement Learning Approach to Online Web Systems Auto-configuration\",\"authors\":\"Xiangping Bu, J. Rao, Chengzhong Xu\",\"doi\":\"10.1109/ICDCS.2009.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a web system, configuration is crucial to the performance and service availability. It is a challenge, not only because of the dynamics of Internet traffic, but also the dynamic virtual machine environment the system tends to be run on. In this paper, we propose a reinforcement learning approach for autonomic configuration and reconfiguration of multi-tier web systems. It is able to adapt performance parameter settings not only to the change of workload, but also to the change of virtual machine configurations. The RL approach is enhanced with an efficient initialization policy to reduce the learning time for online decision. The approach is evaluated using TPC-W benchmark on a three-tier website hosted on a Xen-based virtual machine environment. Experiment results demonstrate that the approach can autoconfigure the web system dynamically in response to the change in both workload and VM resource. It can drive the system into a near-optimal configuration setting in less than 25 trial-and-error iterations.\",\"PeriodicalId\":387968,\"journal\":{\"name\":\"2009 29th IEEE International Conference on Distributed Computing Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 29th IEEE International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2009.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 29th IEEE International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2009.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Reinforcement Learning Approach to Online Web Systems Auto-configuration
In a web system, configuration is crucial to the performance and service availability. It is a challenge, not only because of the dynamics of Internet traffic, but also the dynamic virtual machine environment the system tends to be run on. In this paper, we propose a reinforcement learning approach for autonomic configuration and reconfiguration of multi-tier web systems. It is able to adapt performance parameter settings not only to the change of workload, but also to the change of virtual machine configurations. The RL approach is enhanced with an efficient initialization policy to reduce the learning time for online decision. The approach is evaluated using TPC-W benchmark on a three-tier website hosted on a Xen-based virtual machine environment. Experiment results demonstrate that the approach can autoconfigure the web system dynamically in response to the change in both workload and VM resource. It can drive the system into a near-optimal configuration setting in less than 25 trial-and-error iterations.