Marcin Bienkowski, Jan Marcinkowski, Maciej Pacut, S. Schmid, Aleksandra Spyra
{"title":"在线树缓存","authors":"Marcin Bienkowski, Jan Marcinkowski, Maciej Pacut, S. Schmid, Aleksandra Spyra","doi":"10.1145/3087556.3087558","DOIUrl":null,"url":null,"abstract":"We initiate the study of a natural and practically relevant new variant of online caching where the to-be-cached items can have dependencies. We assume that the universe is a tree T and items are tree nodes; we require that if a node v is cached then the whole subtree T(v) rooted at v is cached as well. This theoretical problem finds an immediate application in the context of forwarding table optimization in IP routing and software-defined networks. We present an elegant online deterministic algorithm TC for this problem, and rigorously prove that its competitive ratio is O(height(T) * k_ALG/(k_ALG-k_OPT+1)), where k_ALG and k_OPT denote the cache sizes of an online and the optimal offline algorithm, respectively. The result is optimal up to a factor of O(height(T)).","PeriodicalId":162994,"journal":{"name":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Online Tree Caching\",\"authors\":\"Marcin Bienkowski, Jan Marcinkowski, Maciej Pacut, S. Schmid, Aleksandra Spyra\",\"doi\":\"10.1145/3087556.3087558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate the study of a natural and practically relevant new variant of online caching where the to-be-cached items can have dependencies. We assume that the universe is a tree T and items are tree nodes; we require that if a node v is cached then the whole subtree T(v) rooted at v is cached as well. This theoretical problem finds an immediate application in the context of forwarding table optimization in IP routing and software-defined networks. We present an elegant online deterministic algorithm TC for this problem, and rigorously prove that its competitive ratio is O(height(T) * k_ALG/(k_ALG-k_OPT+1)), where k_ALG and k_OPT denote the cache sizes of an online and the optimal offline algorithm, respectively. The result is optimal up to a factor of O(height(T)).\",\"PeriodicalId\":162994,\"journal\":{\"name\":\"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3087556.3087558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087556.3087558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We initiate the study of a natural and practically relevant new variant of online caching where the to-be-cached items can have dependencies. We assume that the universe is a tree T and items are tree nodes; we require that if a node v is cached then the whole subtree T(v) rooted at v is cached as well. This theoretical problem finds an immediate application in the context of forwarding table optimization in IP routing and software-defined networks. We present an elegant online deterministic algorithm TC for this problem, and rigorously prove that its competitive ratio is O(height(T) * k_ALG/(k_ALG-k_OPT+1)), where k_ALG and k_OPT denote the cache sizes of an online and the optimal offline algorithm, respectively. The result is optimal up to a factor of O(height(T)).