分析嵌入式JVM环境中的堆错误行为

Guilin Chen, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, M. J. Irwin
{"title":"分析嵌入式JVM环境中的堆错误行为","authors":"Guilin Chen, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, M. J. Irwin","doi":"10.1109/CODES+ISSS.2004.6","DOIUrl":null,"url":null,"abstract":"Recent studies have shown that transient hardware errors caused by external factors such as alpha particles and cosmic ray strikes can be responsible for a large percentage of system down-time. Denser processing technologies, increasing clock speeds, and low supply voltages used in embedded systems can worsen this problem. In many embedded environments, one may not want to provision extensive error protection in hardware because of (i) form-factor or power consumption limitations, and/or (ii) to keep costs low. Also, the mismatch between the hardware protection granularity and the field access granularity can lead to false alarms and error cancellations. Consequently, software-based approaches to identify and possibly rectify these errors seem to be promising. Towards this goal, This work specifically looks to enhance the software's ability to detect heap memory errors in a Java-based embedded system. Using several embedded Java applications, This work first studies the tradeoffs between reliability, performance, and memory space overhead for two schemes that perform error checks at object and field granularities. We also study the impact of object characteristics (e.g., lifetime, re-use intervals, access frequency, etc.) on error propagation. Considering the pros and cons of these two schemes, we then investigate two hybrid strategies that attempt to strike a balance between memory space and performance overheads and reliability. Our experimental results clearly show that the granularity of error protection and its frequency can significantly impact static/dynamic overheads and error detection ability.","PeriodicalId":127038,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Analyzing heap error behavior in embedded JVM environments\",\"authors\":\"Guilin Chen, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, M. J. Irwin\",\"doi\":\"10.1109/CODES+ISSS.2004.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have shown that transient hardware errors caused by external factors such as alpha particles and cosmic ray strikes can be responsible for a large percentage of system down-time. Denser processing technologies, increasing clock speeds, and low supply voltages used in embedded systems can worsen this problem. In many embedded environments, one may not want to provision extensive error protection in hardware because of (i) form-factor or power consumption limitations, and/or (ii) to keep costs low. Also, the mismatch between the hardware protection granularity and the field access granularity can lead to false alarms and error cancellations. Consequently, software-based approaches to identify and possibly rectify these errors seem to be promising. Towards this goal, This work specifically looks to enhance the software's ability to detect heap memory errors in a Java-based embedded system. Using several embedded Java applications, This work first studies the tradeoffs between reliability, performance, and memory space overhead for two schemes that perform error checks at object and field granularities. We also study the impact of object characteristics (e.g., lifetime, re-use intervals, access frequency, etc.) on error propagation. Considering the pros and cons of these two schemes, we then investigate two hybrid strategies that attempt to strike a balance between memory space and performance overheads and reliability. Our experimental results clearly show that the granularity of error protection and its frequency can significantly impact static/dynamic overheads and error detection ability.\",\"PeriodicalId\":127038,\"journal\":{\"name\":\"International Conference on Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CODES+ISSS.2004.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODES+ISSS.2004.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

最近的研究表明,由外部因素(如α粒子和宇宙射线撞击)引起的瞬态硬件错误可能导致很大比例的系统停机时间。嵌入式系统中使用的更密集的处理技术、不断提高的时钟速度和较低的电源电压会使这个问题恶化。在许多嵌入式环境中,可能不希望在硬件中提供广泛的错误保护,因为(i)形状因素或功耗限制,和/或(ii)保持低成本。此外,硬件保护粒度和字段访问粒度之间的不匹配可能导致假警报和错误取消。因此,基于软件的方法来识别和纠正这些错误似乎是有希望的。为了实现这一目标,本工作特别着眼于增强软件在基于java的嵌入式系统中检测堆内存错误的能力。本文使用几个嵌入式Java应用程序,首先研究了在对象和字段粒度上执行错误检查的两种方案的可靠性、性能和内存空间开销之间的权衡。我们还研究了对象特性(例如,生命周期,重用间隔,访问频率等)对错误传播的影响。考虑到这两种方案的优缺点,然后我们研究了两种混合策略,它们试图在内存空间、性能开销和可靠性之间取得平衡。我们的实验结果清楚地表明,错误保护的粒度及其频率可以显着影响静态/动态开销和错误检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing heap error behavior in embedded JVM environments
Recent studies have shown that transient hardware errors caused by external factors such as alpha particles and cosmic ray strikes can be responsible for a large percentage of system down-time. Denser processing technologies, increasing clock speeds, and low supply voltages used in embedded systems can worsen this problem. In many embedded environments, one may not want to provision extensive error protection in hardware because of (i) form-factor or power consumption limitations, and/or (ii) to keep costs low. Also, the mismatch between the hardware protection granularity and the field access granularity can lead to false alarms and error cancellations. Consequently, software-based approaches to identify and possibly rectify these errors seem to be promising. Towards this goal, This work specifically looks to enhance the software's ability to detect heap memory errors in a Java-based embedded system. Using several embedded Java applications, This work first studies the tradeoffs between reliability, performance, and memory space overhead for two schemes that perform error checks at object and field granularities. We also study the impact of object characteristics (e.g., lifetime, re-use intervals, access frequency, etc.) on error propagation. Considering the pros and cons of these two schemes, we then investigate two hybrid strategies that attempt to strike a balance between memory space and performance overheads and reliability. Our experimental results clearly show that the granularity of error protection and its frequency can significantly impact static/dynamic overheads and error detection ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信