自动发现软件调优参数

Nevon Brake, J. Cordy, Elizabeth Dancy, Marin Litoiu, Valentina Popescu
{"title":"自动发现软件调优参数","authors":"Nevon Brake, J. Cordy, Elizabeth Dancy, Marin Litoiu, Valentina Popescu","doi":"10.1145/1370018.1370031","DOIUrl":null,"url":null,"abstract":"Software Tuning Panels for Autonomic Control (STAC) is a project to assist in the integration of existing software into autonomic frameworks. It works by identifying tuning parameters and rearchitecting to expose them as a separate control panel module. The project poses three distinct research challenges: automating the identification of tuning parameters, rearchitecting to centralize and expose them, and combining these two capabilities to facilitate the integration of existing software into autonomic frameworks. Our previous work focused on the second problem, automating the rearchitecture to expose and isolate tuning parameters. In this paper we concentrate on the first problem, automating the identification of tuning parameters. We begin with an empirical study of documented tuning parameters in a number of open source applications. From our observations of these known tuning parameters, we create a catalogue of different kinds and organize them into a taxonomy. Finally, we characterize a member of the taxonomy as a source code pattern that is used to find similar tuning parameters. We report our experience in applying this methodology in the context of a large, open source Java system.","PeriodicalId":168314,"journal":{"name":"International Symposium on Software Engineering for Adaptive and Self-Managing Systems","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Automating discovery of software tuning parameters\",\"authors\":\"Nevon Brake, J. Cordy, Elizabeth Dancy, Marin Litoiu, Valentina Popescu\",\"doi\":\"10.1145/1370018.1370031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software Tuning Panels for Autonomic Control (STAC) is a project to assist in the integration of existing software into autonomic frameworks. It works by identifying tuning parameters and rearchitecting to expose them as a separate control panel module. The project poses three distinct research challenges: automating the identification of tuning parameters, rearchitecting to centralize and expose them, and combining these two capabilities to facilitate the integration of existing software into autonomic frameworks. Our previous work focused on the second problem, automating the rearchitecture to expose and isolate tuning parameters. In this paper we concentrate on the first problem, automating the identification of tuning parameters. We begin with an empirical study of documented tuning parameters in a number of open source applications. From our observations of these known tuning parameters, we create a catalogue of different kinds and organize them into a taxonomy. Finally, we characterize a member of the taxonomy as a source code pattern that is used to find similar tuning parameters. We report our experience in applying this methodology in the context of a large, open source Java system.\",\"PeriodicalId\":168314,\"journal\":{\"name\":\"International Symposium on Software Engineering for Adaptive and Self-Managing Systems\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Software Engineering for Adaptive and Self-Managing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1370018.1370031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Software Engineering for Adaptive and Self-Managing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1370018.1370031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

自主控制软件调优面板(STAC)是一个帮助将现有软件集成到自主框架中的项目。它的工作原理是识别调优参数并重新架构以将它们公开为单独的控制面板模块。该项目提出了三个不同的研究挑战:自动识别调优参数,重新构建以集中和公开它们,以及结合这两个功能以促进将现有软件集成到自治框架中。我们之前的工作集中在第二个问题上,即自动化重构以公开和隔离调优参数。本文主要研究第一个问题,即自动识别调谐参数。我们首先对许多开放源码应用程序中记录的调优参数进行实证研究。根据对这些已知调优参数的观察,我们创建了一个不同类型的目录,并将它们组织到一个分类法中。最后,我们将分类法的一个成员描述为用于查找类似调优参数的源代码模式。我们将报告在大型开源Java系统中应用此方法的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automating discovery of software tuning parameters
Software Tuning Panels for Autonomic Control (STAC) is a project to assist in the integration of existing software into autonomic frameworks. It works by identifying tuning parameters and rearchitecting to expose them as a separate control panel module. The project poses three distinct research challenges: automating the identification of tuning parameters, rearchitecting to centralize and expose them, and combining these two capabilities to facilitate the integration of existing software into autonomic frameworks. Our previous work focused on the second problem, automating the rearchitecture to expose and isolate tuning parameters. In this paper we concentrate on the first problem, automating the identification of tuning parameters. We begin with an empirical study of documented tuning parameters in a number of open source applications. From our observations of these known tuning parameters, we create a catalogue of different kinds and organize them into a taxonomy. Finally, we characterize a member of the taxonomy as a source code pattern that is used to find similar tuning parameters. We report our experience in applying this methodology in the context of a large, open source Java system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信