基于感官预测和误差校正的神经解码器设计

Junkai Lu, Mo Chen, Y. Chang, M. Tomizuka, J. Carmena, C. Tomlin
{"title":"基于感官预测和误差校正的神经解码器设计","authors":"Junkai Lu, Mo Chen, Y. Chang, M. Tomizuka, J. Carmena, C. Tomlin","doi":"10.1109/CDC.2014.7040489","DOIUrl":null,"url":null,"abstract":"Brain-machine interfaces (BMI) hold great potential to improve the quality of life of many patients with disabilities. The neural decoder, which expresses the mapping between the neural signals and the subject's motion, plays an important role in BMI systems. Conventional neural decoders are generally in the form of a kinematic Kalman filter which does not possess an explicit mechanism to deal with the unavoidable mismatch between the biological system and the model of the system used by the decoder. This paper presents a novel design of a neural decoder that uses a one-step model predictive controller to generate a control signal that compensates for the inherent model mismatch. The effectiveness of the proposed decoding algorithm compares favorably to the state-of-the-art Kalman filter in numerical simulations with different degrees of model mismatch.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a neural decoder by sensory prediction and error correction\",\"authors\":\"Junkai Lu, Mo Chen, Y. Chang, M. Tomizuka, J. Carmena, C. Tomlin\",\"doi\":\"10.1109/CDC.2014.7040489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-machine interfaces (BMI) hold great potential to improve the quality of life of many patients with disabilities. The neural decoder, which expresses the mapping between the neural signals and the subject's motion, plays an important role in BMI systems. Conventional neural decoders are generally in the form of a kinematic Kalman filter which does not possess an explicit mechanism to deal with the unavoidable mismatch between the biological system and the model of the system used by the decoder. This paper presents a novel design of a neural decoder that uses a one-step model predictive controller to generate a control signal that compensates for the inherent model mismatch. The effectiveness of the proposed decoding algorithm compares favorably to the state-of-the-art Kalman filter in numerical simulations with different degrees of model mismatch.\",\"PeriodicalId\":202708,\"journal\":{\"name\":\"53rd IEEE Conference on Decision and Control\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"53rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2014.7040489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7040489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑机接口(BMI)在改善许多残疾患者的生活质量方面具有巨大的潜力。神经解码器在身体质量指数系统中起着重要的作用,它表达了神经信号与被试运动之间的映射关系。传统的神经解码器通常采用运动卡尔曼滤波器的形式,它没有明确的机制来处理生物系统与解码器所使用的系统模型之间不可避免的不匹配。本文提出了一种新颖的神经解码器设计,该解码器使用一步模型预测控制器来产生控制信号,以补偿固有的模型不匹配。在不同程度的模型不匹配的数值模拟中,所提出的解码算法的有效性优于最先进的卡尔曼滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a neural decoder by sensory prediction and error correction
Brain-machine interfaces (BMI) hold great potential to improve the quality of life of many patients with disabilities. The neural decoder, which expresses the mapping between the neural signals and the subject's motion, plays an important role in BMI systems. Conventional neural decoders are generally in the form of a kinematic Kalman filter which does not possess an explicit mechanism to deal with the unavoidable mismatch between the biological system and the model of the system used by the decoder. This paper presents a novel design of a neural decoder that uses a one-step model predictive controller to generate a control signal that compensates for the inherent model mismatch. The effectiveness of the proposed decoding algorithm compares favorably to the state-of-the-art Kalman filter in numerical simulations with different degrees of model mismatch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信