办公室内日光眩光概率预测

A. Mentens, Simon Martin, Filip Descamps, John Lataire, Valéry Jacobs, Ann
{"title":"办公室内日光眩光概率预测","authors":"A. Mentens, Simon Martin, Filip Descamps, John Lataire, Valéry Jacobs, Ann","doi":"10.25039/x48.2021.op20","DOIUrl":null,"url":null,"abstract":"Glare assessments are currently made from High Dynamic Range (HDR) images taken from the Point Of View (POV) and viewing direction of a user. This paper analyses the feasibility to estimate the Daylight Glare Probability (DGP) at the user-level based on machine-learning techniques, sun position and a downward-pointing camera sensor mounted at the ceiling of a simulated office environment. Three different office cases have been considered: an empty room, an empty room with venetian blinds and a furnished room without venetian blinds. The influence of the sun direction has been considered as a parameter to predict the observer DGP. Subsequently, the best parameters have been selected to build a black box model using Artificial Intelligence (AI). Results show that, by using the DGP of the ceiling camera and the sun position, it is possible to accurately predict the DGP for an observer’s POV.","PeriodicalId":363368,"journal":{"name":"Proceedings of the Conference CIE 2021","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DAYLIGHT GLARE PROBABILITY PREDICTION FOR AN OFFICE ROOM\",\"authors\":\"A. Mentens, Simon Martin, Filip Descamps, John Lataire, Valéry Jacobs, Ann\",\"doi\":\"10.25039/x48.2021.op20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glare assessments are currently made from High Dynamic Range (HDR) images taken from the Point Of View (POV) and viewing direction of a user. This paper analyses the feasibility to estimate the Daylight Glare Probability (DGP) at the user-level based on machine-learning techniques, sun position and a downward-pointing camera sensor mounted at the ceiling of a simulated office environment. Three different office cases have been considered: an empty room, an empty room with venetian blinds and a furnished room without venetian blinds. The influence of the sun direction has been considered as a parameter to predict the observer DGP. Subsequently, the best parameters have been selected to build a black box model using Artificial Intelligence (AI). Results show that, by using the DGP of the ceiling camera and the sun position, it is possible to accurately predict the DGP for an observer’s POV.\",\"PeriodicalId\":363368,\"journal\":{\"name\":\"Proceedings of the Conference CIE 2021\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference CIE 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25039/x48.2021.op20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference CIE 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25039/x48.2021.op20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

眩光评估目前是从用户的视点(POV)和观看方向拍摄的高动态范围(HDR)图像进行的。本文分析了基于机器学习技术、太阳位置和安装在模拟办公环境天花板上的向下指向的相机传感器在用户层面估计日光眩光概率(DGP)的可行性。考虑了三种不同的办公室情况:一间空房间,一间有百叶帘的空房间和一间有家具但没有百叶帘的房间。考虑了太阳方向的影响,将其作为预测观测者gdp的参数。随后,选择最佳参数,利用人工智能(AI)构建黑盒模型。结果表明,利用顶棚相机的DGP和太阳位置,可以准确地预测观察者的POV的DGP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DAYLIGHT GLARE PROBABILITY PREDICTION FOR AN OFFICE ROOM
Glare assessments are currently made from High Dynamic Range (HDR) images taken from the Point Of View (POV) and viewing direction of a user. This paper analyses the feasibility to estimate the Daylight Glare Probability (DGP) at the user-level based on machine-learning techniques, sun position and a downward-pointing camera sensor mounted at the ceiling of a simulated office environment. Three different office cases have been considered: an empty room, an empty room with venetian blinds and a furnished room without venetian blinds. The influence of the sun direction has been considered as a parameter to predict the observer DGP. Subsequently, the best parameters have been selected to build a black box model using Artificial Intelligence (AI). Results show that, by using the DGP of the ceiling camera and the sun position, it is possible to accurately predict the DGP for an observer’s POV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信