协贝效度指标在基于聚类聚集和伪聚类中心估计的模糊共聚模型中的应用

Mai Muranishi, Katsuhiro Honda, A. Notsu
{"title":"协贝效度指标在基于聚类聚集和伪聚类中心估计的模糊共聚模型中的应用","authors":"Mai Muranishi, Katsuhiro Honda, A. Notsu","doi":"10.1109/ISDA.2014.7066274","DOIUrl":null,"url":null,"abstract":"In k-Means-type clustering, cluster validation is an important problem, where the most plausible solution supported by several validity indices is selected from results with various parameter settings. Xie-Beni index is a popular validity index in FCM clustering, which measures the plausibility level of fuzzy partitions by considering partition quality and geometrical features. In this research, the applicability of a Xie-Beni-type co-cluster validity index is studied with several fuzzy co-clustering models such as cluster aggregation models (FCCM and Fuzzy CoDoK) and pseudo-cluster-center models (FSKWIC and SCAD2), and is demonstrated in a document clustering application.","PeriodicalId":328479,"journal":{"name":"2014 14th International Conference on Intelligent Systems Design and Applications","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Application of xie-beni-type validity index to fuzzy co-clustering models based on cluster aggregation and pseudo-cluster-center estimation\",\"authors\":\"Mai Muranishi, Katsuhiro Honda, A. Notsu\",\"doi\":\"10.1109/ISDA.2014.7066274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In k-Means-type clustering, cluster validation is an important problem, where the most plausible solution supported by several validity indices is selected from results with various parameter settings. Xie-Beni index is a popular validity index in FCM clustering, which measures the plausibility level of fuzzy partitions by considering partition quality and geometrical features. In this research, the applicability of a Xie-Beni-type co-cluster validity index is studied with several fuzzy co-clustering models such as cluster aggregation models (FCCM and Fuzzy CoDoK) and pseudo-cluster-center models (FSKWIC and SCAD2), and is demonstrated in a document clustering application.\",\"PeriodicalId\":328479,\"journal\":{\"name\":\"2014 14th International Conference on Intelligent Systems Design and Applications\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2014.7066274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2014.7066274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在k-均值型聚类中,聚类验证是一个重要的问题,它从不同参数设置的结果中选择多个有效性指标支持的最合理的解决方案。Xie-Beni指数是FCM聚类中常用的有效性指标,它通过考虑分区质量和几何特征来衡量模糊分区的可信程度。本研究利用聚类聚集模型(FCCM和fuzzy CoDoK)和伪聚类中心模型(FSKWIC和SCAD2)等几种模糊共聚类模型,研究了xie - beni型共聚类有效性指标的适用性,并在文档聚类应用中进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of xie-beni-type validity index to fuzzy co-clustering models based on cluster aggregation and pseudo-cluster-center estimation
In k-Means-type clustering, cluster validation is an important problem, where the most plausible solution supported by several validity indices is selected from results with various parameter settings. Xie-Beni index is a popular validity index in FCM clustering, which measures the plausibility level of fuzzy partitions by considering partition quality and geometrical features. In this research, the applicability of a Xie-Beni-type co-cluster validity index is studied with several fuzzy co-clustering models such as cluster aggregation models (FCCM and Fuzzy CoDoK) and pseudo-cluster-center models (FSKWIC and SCAD2), and is demonstrated in a document clustering application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信